Skip to main content

Estimating Recombination Rates from Genetic Variation in Humans

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 856))

Abstract

Recombination acts to shuffle the existing genetic variation within a population, leading to various approaches for detecting its action and estimating the rate at which it occurs. Here, we discuss the principal methodological and analytical approaches taken to understanding the distribution of recombination across the human genome. We first discuss the detection of recent crossover events in both well-characterised pedigrees and larger populations with extensive recent shared ancestry. We then describe approaches for learning about the fine-scale structure of recombination rate variation from patterns of genetic variation in unrelated individuals. Finally, we show how related approaches using individuals of admixed ancestry can provide an alternative approach to analysing recombination. Approaches differ not only in the statistical methods used, but also in the resolution of inference, the timescale over which recombination events are detected, and the extent to which inter-individual variation can be identified.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Broman, K.W., et al., Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet, 1998. 63(3): p. 861–9.

    Article  PubMed  CAS  Google Scholar 

  2. Kong, A., et al., A high-resolution recombination map of the human genome. Nat Genet, 2002. 31(3): p. 241–7.

    PubMed  CAS  Google Scholar 

  3. The International HapMap Consortium, A haplotype map of the human genome. Nature, 2005. 437(7063): p. 1299–320.

    Article  Google Scholar 

  4. McVean, G.A., et al., The fine-scale structure of recombination rate variation in the human genome. Science, 2004. 304(5670): p. 581–4.

    Article  PubMed  CAS  Google Scholar 

  5. Myers, S., et al., A fine-scale map of recombination rates and hotspots across the human genome. Science, 2005. 310(5746): p. 321–4.

    Article  PubMed  CAS  Google Scholar 

  6. Jeffreys, A.J., L. Kauppi, and R. Neumann, Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet, 2001. 29(2): p. 217–22.

    Article  PubMed  CAS  Google Scholar 

  7. Jeffreys, A.J., et al., Human recombination hotspots hidden in regions of strong marker association. Nat Genet, 2005. 37(6): p. 601–6.

    Article  PubMed  CAS  Google Scholar 

  8. Myers, S., et al., The distribution and causes of meiotic recombination in the human genome. Biochem Soc Trans, 2006. 34(Pt 4): p. 526–30.

    PubMed  CAS  Google Scholar 

  9. Baudat, F., et al., PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science, 2010. 327(5967): p. 836–40.

    Article  PubMed  CAS  Google Scholar 

  10. Berg, I.L., et al., PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet, 2010. 42(10): p. 859–63.

    Article  PubMed  CAS  Google Scholar 

  11. Myers, S., et al., Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science, 2010. 327(5967): p. 876–9.

    Article  PubMed  CAS  Google Scholar 

  12. Parvanov, E.D., P.M. Petkov, and K. Paigen, Prdm9 controls activation of mammalian recombination hotspots. Science, 2010. 327(5967): p. 835.

    Article  PubMed  CAS  Google Scholar 

  13. Marchini, J., et al., A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet, 2007. 39(7): p. 906–13.

    Article  PubMed  CAS  Google Scholar 

  14. Abecasis, G.R., D. Ghosh, and T.E. Nichols, Linkage disequilibrium: ancient history drives the new genetics. Hum Hered, 2005. 59(2): p. 118–24.

    Article  PubMed  Google Scholar 

  15. Price, A.L., et al., Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLoS Genet, 2009. 5(6): p. e1000519.

    Article  PubMed  Google Scholar 

  16. McVean, G. and C.C. Spencer, Scanning the human genome for signals of selection. Curr Opin Genet Dev, 2006. 16(6): p. 624–9.

    Article  PubMed  CAS  Google Scholar 

  17. Nielsen, R., et al., Recent and ongoing selection in the human genome. Nat Rev Genet, 2007. 8(11): p. 857–68.

    Article  PubMed  CAS  Google Scholar 

  18. Myers, S., et al., A common sequence motif associated with recombination hotspots and genome instability in humans. Nat Genet, 2008. 40(9): p. 1124–9.

    Article  PubMed  CAS  Google Scholar 

  19. Stankiewicz, P. and J.R. Lupski, Genome architecture, rearrangements and genomic disorders. Trends Genet, 2002. 18(2): p. 74–82.

    Article  PubMed  CAS  Google Scholar 

  20. Kong, A., et al., Fine-scale recombination rate differences between sexes, populations and individuals. Nature, 2010. 467(7319): p. 1099–103.

    Article  PubMed  CAS  Google Scholar 

  21. Jeffreys, A.J., A. Ritchie, and R. Neumann, High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum Mol Genet, 2000. 9(5): p. 725–33.

    Article  PubMed  CAS  Google Scholar 

  22. Jeffreys, A.J. and R. Neumann, Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat Genet, 2002. 31(3): p. 267–71.

    Article  PubMed  CAS  Google Scholar 

  23. Jeffreys, A.J. and R. Neumann, Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum Mol Genet, 2005. 14(15): p. 2277–87.

    Article  PubMed  CAS  Google Scholar 

  24. Botstein, D., et al., Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980. 32(3): p. 314–31.

    PubMed  CAS  Google Scholar 

  25. Coop, G., et al., High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science, 2008. 319(5868): p. 1395–8.

    Article  PubMed  CAS  Google Scholar 

  26. Elston, R.C. and J. Stewart, A general model for the genetic analysis of pedigree data. Hum Hered, 1971. 21(6): p. 523–42.

    Article  PubMed  CAS  Google Scholar 

  27. Lander, E.S. and P. Green, Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A, 1987. 84(8): p. 2363–7.

    Article  PubMed  CAS  Google Scholar 

  28. Kruglyak, L., et al., Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet, 1996. 58(6): p. 1347–63.

    PubMed  CAS  Google Scholar 

  29. Kong, A., et al., Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet, 2008. 40(9): p. 1068–75.

    Article  PubMed  CAS  Google Scholar 

  30. Lewontin, R.C., The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics, 1964. 49(1): p. 49–67.

    PubMed  CAS  Google Scholar 

  31. Hill, W.G. and A. Robertson, Linkage disequilibrium in finite populations. TAG Theoretical and Applied Genetics, 1968. 38(6): p. 226–231.

    Article  Google Scholar 

  32. McVean, G., Linkage disequilibrium, recombination and selection, in The Handbook of Statistical Genetics, D.J. Balding, M. Bishop, and C. Cannings, Editors. 2008, Wiley. p. 909–940.

    Google Scholar 

  33. Ardlie, K.G., L. Kruglyak, and M. Seielstad, Patterns of linkage disequilibrium in the human genome. Nat Rev Genet, 2002. 3(4): p. 299–309.

    Article  PubMed  CAS  Google Scholar 

  34. Hudson, R.R. and N.L. Kaplan, Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics, 1985. 111(1): p. 147–64.

    PubMed  CAS  Google Scholar 

  35. Myers, S., The Detection of Recombination Events Using DNA Sequence Data, in Department of Statistics, 2002, University of Oxford: Oxford.

    Google Scholar 

  36. Myers, S.R. and R.C. Griffiths, Bounds on the minimum number of recombination events in a sample history. Genetics, 2003. 163(1): p. 375–94.

    PubMed  CAS  Google Scholar 

  37. Song, Y.S. and J. Hein, Constructing minimal ancestral recombination graphs. J Comput Biol, 2005. 12(2): p. 147–69.

    Article  PubMed  CAS  Google Scholar 

  38. Wakeley, J., Coalescent theory : an introduction, 2009, Greenwood Village, Colo.: Roberts & Co. Publishers. xii, 326 p.

    Google Scholar 

  39. Nordborg, M., Coalescent theory. 2000.

    Google Scholar 

  40. Hein, J., M.H. Schierup, and C. Wiuf, Gene genealogies, variation and evolution : a primer in coalescent theory, 2005, Oxford ; New York: Oxford University Press. xiii, 276 p.

    Google Scholar 

  41. Griffiths, R.C. and P. Marjoram, Ancestral inference from samples of DNA sequences with recombination. J Comput Biol, 1996. 3(4): p. 479–502.

    Article  PubMed  CAS  Google Scholar 

  42. The International HapMap Consortium, A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007. 449(7164): p. 851–61.

    Google Scholar 

  43. Song, Y.S., R. Lyngso, and J. Hein, Counting all possible ancestral configurations of sample sequences in population genetics. IEEE/ACM Trans Comput Biol Bioinform, 2006. 3(3): p. 239–51.

    Article  PubMed  CAS  Google Scholar 

  44. Hudson, R.R., Two-locus sampling distributions and their application. Genetics, 2001. 159(4): p. 1805–17.

    PubMed  CAS  Google Scholar 

  45. McVean, G., P. Awadalla, and P. Fearnhead, A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics, 2002. 160(3): p. 1231–41.

    PubMed  CAS  Google Scholar 

  46. Auton, A. and G. McVean, Recombination rate estimation in the presence of hotspots. Genome Res, 2007. 17(8): p. 1219–27.

    Article  PubMed  CAS  Google Scholar 

  47. Fearnhead, P., Consistency of estimators of the population-scaled recombination rate. Theor Popul Biol, 2003. 64(1): p. 67–79.

    Article  PubMed  Google Scholar 

  48. Hinch, A.G., et al., The landscape of recombination in African Americans. Nature, 2011. 476: p. 170–75.

    Google Scholar 

  49. Li, N. and M. Stephens, Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics, 2003. 165(4): p. 2213–33.

    PubMed  CAS  Google Scholar 

  50. Pfaff, C.L., et al., Population structure in admixed populations: effect of admixture dynamics on the pattern of linkage disequilibrium. Am J Hum Genet, 2001. 68(1): p. 198–207.

    Article  PubMed  CAS  Google Scholar 

  51. Patterson, N., et al., Methods for high-density admixture mapping of disease genes. Am J Hum Genet, 2004. 74(5): p. 979–1000.

    Article  PubMed  CAS  Google Scholar 

  52. Seldin, M.F., et al., Putative ancestral origins of chromosomal segments in individual african americans: implications for admixture mapping. Genome Res, 2004. 14(6): p. 1076–84.

    Article  PubMed  CAS  Google Scholar 

  53. Tian, C., et al., A genomewide single-nucleotide-polymorphism panel with high ancestry information for African American admixture mapping. Am J Hum Genet, 2006. 79(4): p. 640–9.

    Article  PubMed  CAS  Google Scholar 

  54. Kong, A., et al., Recombination rate and reproductive success in humans. Nat Genet, 2004. 36(11): p. 1203–6.

    Article  PubMed  CAS  Google Scholar 

  55. Ptak, S.E., et al., Fine-scale recombination patterns differ between chimpanzees and humans. Nat Genet, 2005. 37(4): p. 429–34.

    Article  PubMed  CAS  Google Scholar 

  56. Winckler, W., et al., Comparison of fine-scale recombination rates in humans and chimpanzees. Science, 2005. 308(5718): p. 107–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil McVean .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Auton, A., McVean, G. (2012). Estimating Recombination Rates from Genetic Variation in Humans. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 856. Humana Press. https://doi.org/10.1007/978-1-61779-585-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-585-5_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-584-8

  • Online ISBN: 978-1-61779-585-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics