Skip to main content

Analysis of Catalytic RNA Structure and Function by Nucleotide Analog Interference Mapping

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

Nucleotide analog interference mapping (NAIM) is a quick and efficient method to define concurrently, yet singly, the importance of specific functional groups at particular nucleotide residues to the structure and function of an RNA. NAIM can be utilized on virtually any RNA with an assayable function. The method hinges on the ability to successfully incorporate, within an RNA transcript, various 5′-O-(1-thio)nucleoside analogs randomly via in vitro transcription. This could be achieved by using wild-type or Y639F mutant T7 RNA polymerase, thereby creating a pool of analog doped RNAs. The pool when subjected to a selection step to separate the active transcripts from the inactive ones leads to the identification of functional groups that are crucial for RNA activity. The technique can be used to study ribozyme structure and function via monitoring of cleavage or ligation reactions, define functional groups critical for RNA folding, RNA–RNA interactions, and RNA interactions with proteins, metals, or other small molecules. All major classes of catalytic RNAs have been probed by NAIM. This is a generalized approach that should provide the scientific community with the tools to better understand RNA structure–activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conway, L., and Wickens, M. (1989) Modification interference analysis of reactions using RNA substrates. Methods Enzymol. 180, 369–379.

    Article  PubMed  CAS  Google Scholar 

  2. Stern, S., Moazed, D., and Noller, H. F. (1988) Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 164, 481–489.

    Article  PubMed  CAS  Google Scholar 

  3. Conrad, F., Hanne, A., Gaur, R. K., and Krupp, G. (1995) Enzymatic synthesis of 2′-modified nucleic acids: Identification of important phosphate and ribose moieties in RNase P substrates. Nucleic Acids Res. 23, 1845–1853.

    Article  PubMed  CAS  Google Scholar 

  4. Gaur, R. K., and Krupp, G. (1993) Modification interference approach to detect ribose moieties important for the optimal activity of a ribozyme. Nucleic Acids Res. 21, 21–26.

    Article  PubMed  CAS  Google Scholar 

  5. Gish, G., and Eckstein, F. (1988) DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240, 1520–1522.

    Article  PubMed  CAS  Google Scholar 

  6. Suydam, I. T., and Strobel, S. A. (2009) Nucleotide analog interference mapping, in Methods Enzymol. 468, 3–30.

    Article  PubMed  CAS  Google Scholar 

  7. Strauss-Soukup, J. K., and Strobel, S. A. (2000) A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. J. Mol. Biol. 302, 339–358.

    Article  PubMed  CAS  Google Scholar 

  8. Strobel, S. A., and Shetty, K. (1997) Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc. Natl. Acad. Sci. U. S. A. 94, 2903–2908.

    Article  PubMed  CAS  Google Scholar 

  9. Boudvillain, M., and Pyle, A. M. (1998) Defining functional groups, core structural features and inter-domain tertiary contacts essential for group II intron self-splicing: a NAIM analysis. EMBO J. 17, 7091–7104.

    Article  PubMed  CAS  Google Scholar 

  10. Siew, D., Zahler, N. H., Cassano, A. G., Strobel, S. A., and Harris, M. E. (1999) Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme. Biochemistry 38, 1873–1883.

    Article  PubMed  CAS  Google Scholar 

  11. Ryder, S. P., and Strobel, S. A. (1999) Nucleotide analog interference mapping of the hairpin ribozyme: implications for secondary and tertiary structure formation. J. Mol. Biol. 291, 295–311.

    Article  PubMed  CAS  Google Scholar 

  12. Oyelere, A. K., Kardon, J. R., and Strobel, S. A. (2002) pKa perturbation in genomic Hepatitis Delta Virus ribozyme catalysis evidenced by nucleotide analogue interference mapping. Biochemistry 41, 3667–3675.

    Article  PubMed  CAS  Google Scholar 

  13. Jones, F. D., and Strobel, S. A. (2003) Ionization of a critical adenosine residue in the neurospora varkud satellite ribozyme active site. Biochemistry 42, 4265–4276.

    Article  PubMed  CAS  Google Scholar 

  14. Basu, S., Rambo, R. P., Strauss-Soukup, J., Cate, J. H., Ferre-D’Amare, A. R., Strobel, S. A., and Doudna, J. A. (1998) A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat. Struct. Biol. 5, 986–992.

    Article  PubMed  CAS  Google Scholar 

  15. Wrzesinski, J., and Jozwiakowski, S. K. (2008) Structural basis for recognition of Co2+ by RNA aptamers. FEBS J. 275, 1651–1662.

    Article  PubMed  CAS  Google Scholar 

  16. Basu, S., and Strobel, S. A. (1999) Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain. RNA 5, 1399–1407.

    Article  PubMed  CAS  Google Scholar 

  17. Cate, J. H., Hanna, R. L., and Doudna, J. A. (1997) A magnesium ion core at the heart of a ribozyme domain. Nat. Struct. Biol. 4, 553–558.

    Article  PubMed  CAS  Google Scholar 

  18. Jansen, J. A., McCarthy, T. J., Soukup, G. A., and Soukup, J. K. (2006) Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat. Struct. Biol. 13, 517–523.

    Article  CAS  Google Scholar 

  19. Ryder, S. P., Ortoleva-Donnelly, L., Kosek, A. B., and Strobel, S. A. (2000) Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol. 317, 92–109.

    Article  PubMed  CAS  Google Scholar 

  20. Arabshahi, A., and Frey, P. A. (1994) A simplified procedure for synthesizing nucleoside 1-thiotriphosphates: dATPαS, dGTPαS, UTPαS, and dTTPαS. Biochem. Biophys. Res. Commun. 204, 150–155.

    Article  PubMed  CAS  Google Scholar 

  21. Oyelere, A. K., and Strobel, S. A. (2000) Biochemical detection of cytidine protonation within RNA. J. Am. Chem. Soc. 122, 10259–10267.

    Article  CAS  Google Scholar 

  22. Eckstein, F., and Goody, R. S. (1976) Synthesis and properties of diastereoisomers of adenosine 5′-(O-1-thiotriphosphate) and adenosine 5′-(O-2-thiotriphosphate). Biochemistry 15, 1685–1691.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, J. T., and Benkovic, S. J. (1983) Synthesis and separation of diastereomers of deoxynucleoside 5′-O-(1-thio)triphosphates. Nucleic Acids Res. 11, 3737–3751.

    Article  PubMed  CAS  Google Scholar 

  24. Chamberlain, M., Kingston, R., Gilman, M., Wiggs, J., and de Vera, A. (1983) Isolation of bacterial and bacteriophage RNA polymerases and their use in synthesis of RNA in vitro. Methods Enzymol. 101, 540–568.

    Article  Google Scholar 

  25. Griffiths, A. D., Potter, B. V. L., and Eperon, I. C. (1987) Stereospecificity of nucleases towards phosphorothioate-substituted RNA: stereochemistry of transcription by T7 RNA polymerase. Nucleic Acids Res. 15, 4145–4162.

    Article  PubMed  CAS  Google Scholar 

  26. Sousa, R. (2000) Use of T7 RNA polymerase and its mutants for incorporation of nucleoside analogs into RNA. Methods Enzymol. 317, 65–74.

    Article  PubMed  CAS  Google Scholar 

  27. Sousa, R., and Padilla, R. (1995) A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 14, 4609–4621.

    PubMed  CAS  Google Scholar 

  28. Christian, E. L., and Yarus, M. (1992) Analysis of the role of phosphate oxygens in the group I intron from Tetrahymena. J. Mol. Biol. 228, 743–758.

    Article  PubMed  CAS  Google Scholar 

  29. Milligan, J. F., and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  30. Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., and Doudna, J. A. (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287, 1232–1239.

    Article  PubMed  CAS  Google Scholar 

  31. Beaudry, A. A., and Joyce, G. F. (1992) Directed evolution of an RNA enzyme. Science 257, 635–641.

    Article  PubMed  CAS  Google Scholar 

  32. Cech, T. R. (1990) Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568.

    Article  PubMed  CAS  Google Scholar 

  33. Mei, R., and Herschlag, D. (1996) Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Biochemistry 35, 5796–5809.

    Article  PubMed  CAS  Google Scholar 

  34. Lingner, J., and Keller, W. (1993) 3′-End labeling of RNA with recombinant yeast poly(A) polymerase. Nucleic Acids Res. 21, 2917–2920.

    Article  PubMed  CAS  Google Scholar 

  35. Ortoleva-Donnelly, L., Szewczak, A. A., Gutell, R. R., and Strobel, S. A. (1998) The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 4, 498–519.

    Article  PubMed  CAS  Google Scholar 

  36. Soukup, J. K., Minakawa, N., Matsuda, A., and Strobel, S. A. (2002) Identification of A-Minor tertiary interactions within a bacterial group I intron active site by 3-deazaadenosine interference mapping. Biochemistry 41, 10426–10438.

    Article  PubMed  CAS  Google Scholar 

  37. Schwans, J. P., Cortez, C. N., Olvera, J. M., and Piccirilli, J. A. (2003) 2′-Mercaptonucleotide interference reveals regions of close packing within folded RNA molecules. J. Am. Chem. Soc. 125, 10012–10018.

    Article  PubMed  CAS  Google Scholar 

  38. Strobel, S. A., Ortoleva-Donnelly, L., Ryder, S. P., Cate, J. H., and Moncoeur, E. (1998) Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat. Struct. Biol. 5, 60–66.

    Article  PubMed  CAS  Google Scholar 

  39. Suydam, I. T., and Strobel, S. A. (2008) Fluorine substituted adenosines as probes of nucleobase protonation in functional RNAs. J. Am. Chem. Soc. 130, 13639–13648.

    Article  PubMed  CAS  Google Scholar 

  40. Ryder, S. P., Oyelere, A. K., Padilla, J. L., Klostermeier, D., Millar, D. P., and Strobel, S. A. (2001) Investigation of adenosine base ionization in the hairpin ribozyme by nucleotide analog interference mapping. RNA 7, 1454–1463.

    PubMed  CAS  Google Scholar 

  41. Kazantstev, S. V., and Pace, N. R. (1998) Identification by modification-interference of purine N-7 and ribose 2′-OH groups critical for catalysis by bacterial ribonuclease P. RNA 4, 937–947.

    Article  Google Scholar 

  42. Ortoleva-Donnelly, L., Kronman, M., and Strobel, S. A. (1998) Identifying RNA minor groove tertiary contacts by nucleotide analog interference mapping with N2-methylguanosine. Biochemistry 37, 12933–12942.

    Article  PubMed  CAS  Google Scholar 

  43. Szewczak, A. A., Ortoleva-Donnelly, L., Zivarts, M. V., Oyelere, A. K., Kazantsev, A. V., and Strobel, S. A. (1999) An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site. Proc. Natl. Acad. Sci. U. S. A. 96, 11183–11188.

    Article  PubMed  CAS  Google Scholar 

  44. Szewczak, A. A., Ortoleva-Donnelly, L., Ryder, S. P., Moncoeur, E., and Strobel, S. A. (1998) A minor groove RNA triple helix within the catalytic core of a group I intron. Nat. Struct. Biol. 5, 1037–1041.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Scott Strobel for generous gift of some of the analogs and sharing with us unpublished results. This work was supported by funds to SB from the University of Pittsburgh and was conducted at University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Basu, S., Morris, M.J., Pazsint, C. (2012). Analysis of Catalytic RNA Structure and Function by Nucleotide Analog Interference Mapping. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics