Skip to main content

Laser Capture Microdissection of Candida albicans from Host Tissue

  • Protocol
  • First Online:
Host-Fungus Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 845))

Abstract

Laser microdissection is a technique in which specific populations of cells are acquired from sections of complex tissue under direct microscopic visualization. The technique can be used to selectively harvest or ablate host and/or fungal cells from a variety of biological specimens, including human, animal, or plant tissue sections. When coupled with downstream applications such as proteomic and molecular analyses, laser microdissection can address a variety of important biological questions specifically related to the in vivo host-fungus interaction. In this chapter, we describe how laser microdissection enables researchers to selectively isolate Candida albicans cells from host-infected tissue. Detailed protocols are provided for tissue handling and processing, slide preparation, and laser capture microdissection (LCM). Using these methods, we highlight the use of LCM to examine infection-related C. albicans gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, G. I. (2007) An overview of laser microdissection technologies. Acta Histochem109, 171–176.

    Article  Google Scholar 

  2. Zhu, G., Xiao, H., Mohan, V. P., Tanaka, K., Tyagi, S., Tsen, F., Salgame, P., and Chan, J. (2003) Gene expression in the tuberculous granuloma: analysis by laser capture microdissection and real-time PCR. Cell Microbiol5, 445–453.

    Article  CAS  Google Scholar 

  3. Semblat, J. P., Silvie, O., Franetich, J. F., Hannoun, L., Eling, W., and Mazier, D. (2002) Laser capture microdissection of Plasmodium falciparum liver stages for mRNA analysis. Mol Biochem Parasitol121, 179–183.

    Article  CAS  Google Scholar 

  4. Klitgaard, K., Molbak, L., Jensen, T. K., Lindboe, C. F., and Boye, M. (2005) Laser capture microdissection of bacterial cells targeted by fluorescence in situ hybridization. Biotechniques39, 864–868.

    Article  CAS  Google Scholar 

  5. Schutze, K., Niyaz, Y., Stich, M., and Buchstaller, A. (2007) Noncontact laser microdissection and catapulting for pure sample capture. Methods Cell Biol82, 649–673.

    CAS  PubMed  Google Scholar 

  6. Ramsay, K., Jones, M. G., and Wang, Z. (2006) Laser capture microdissection: a novel approach to microanalysis of plant-microbe interactions. Mol Plant Pathol7, 429–435.

    Article  CAS  Google Scholar 

  7. Chandran, D., Inada, N., Hather, G., Kleindt, C. K., and Wildermuth, M. C. (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci USA107, 460–465.

    Article  CAS  Google Scholar 

  8. Kolble, K. (2000) The LEICA microdissection system: design and applications. J Mol Med78, B24-25.

    CAS  PubMed  Google Scholar 

  9. Bagnell, C. R. (2006) Laser Capture Microdissection. In: Coleman, W. B. and Tsongalis, G. J. (Ed). Molecular Diagnostics: For the Clinical Laboratorian. Second Edition, Humana Press, NJ, p. 219–224.

    Chapter  Google Scholar 

  10. Vogel, A., Horneffer, V., Lorenz, K., Linz, N., Huttmann, G., and Gebert, A. (2007) Principles of laser microdissection and catapulting of histologic specimens and live cells. Methods Cell Biol82, 153–205.

    Article  CAS  Google Scholar 

  11. Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., Coukos, G., Geho, D. H., Petricoin, E. F., 3rd, and Liotta, L. A. (2006) Laser-capture microdissection. Nat Protoc1, 586–603.

    Article  CAS  Google Scholar 

  12. Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S., and Liotta, L. A. (1997) Laser capture microdissection: molecular analysis of tissue. Science278, 1481–1483.

    Article  CAS  Google Scholar 

  13. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A., and Liotta, L. A. (1996) Laser capture microdissection. Science274, 998–1001.

    Article  CAS  Google Scholar 

  14. Schofield, D. A., Westwater, C., Paulling, E. E., Nicholas, P. J., and Balish, E. (2003) Detection of Candida albicans mRNA from formalin-fixed, paraffin-embedded mouse tissues by nested reverse transcription-PCR. J Clin Microbiol41, 831–834.

    Article  CAS  Google Scholar 

  15. Thewes, S., Kretschmar, M., Park, H., Schaller, M., Filler, S. G., and Hube, B. (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Molecular Microbiology63, 1606–1628.

    Article  CAS  Google Scholar 

  16. Wang, H., Owens, J. D., Shih, J. H., Li, M. C., Bonner, R. F., and Mushinski, J. F. (2006) Histological staining methods preparatory to laser capture microdissection significantly affect the integrity of the cellular RNA. BMC Genomics7, 97.

    Article  Google Scholar 

  17. Mikulowska-Mennis, A., Taylor, T. B., Vishnu, P., Michie, S. A., Raja, R., Horner, N., and Kunitake, S. T. (2002) High-quality RNA from cells isolated by laser capture microdissection. Biotechniques33, 176–179.

    Article  CAS  Google Scholar 

  18. Nygaard, V., and Hovig, E. (2006) Options available for profiling small samples: a review of sample amplification technology when combined with microarray profiling. Nucleic Acids Res34, 996–1014.

    Article  CAS  Google Scholar 

  19. Feldman, A. L., Costouros, N. G., Wang, E., Qian, M., Marincola, F. M., Alexander, H. R., and Libutti, S. K. (2002) Advantages of mRNA amplification for microarray analysis. Biotechniques33, 906–912, 914.

    Google Scholar 

  20. Rudnicki, M., Eder, S., Schratzberger, G., Mayer, B., Meyer, T. W., Tonko, M., and Mayer, G. (2004) Reliability of T7-based mRNA linear amplification validated by gene expression analysis of human kidney cells using cDNA microarrays. Nephron Exp Nephrol97, e86-95.

    Article  CAS  Google Scholar 

  21. Schneider, J., Buness, A., Huber, W., Volz, J., Kioschis, P., Hafner, M., Poustka, A., and Sultmann, H. (2004) Systematic analysis of T7 RNA polymerase based in vitro linear RNA amplification for use in microarray experiments. BMC Genomics5, 29.

    Article  Google Scholar 

  22. Zakikhany, K., Naglik, J. R., Schmidt-Westhausen, A., Holland, G., Schaller, M., and Hube, B. (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol9, 2938–2954.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Edward Balish, Dr. Bernhard Hube, Dr. Bart Frank, and Dr. Debra Hazen-Martin for informative discussions. We also thank the Gnotobiotic Animal Research Core at the Medical University of South Carolina. This work was supported by NIH grants R43DE017033, R21AI078098, and R21AI076721.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Westwater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Westwater, C., Schofield, D.A. (2012). Laser Capture Microdissection of Candida albicans from Host Tissue. In: Brand, A., MacCallum, D. (eds) Host-Fungus Interactions. Methods in Molecular Biology, vol 845. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-539-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-539-8_27

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-538-1

  • Online ISBN: 978-1-61779-539-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics