Skip to main content

Assignment of Backbone Resonances in a Eukaryotic Protein Kinase – ERK2 as a Representative Example

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

A first step toward the analysis of the structure, dynamics, and interactions of proteins by NMR is obtaining an acceptable level of resonance assignments. This process is nontrivial in most eukaryotic kinases given their size and suboptimal behavior in solution. Using inactive ERK2 as a representative example, we describe the procedures we utilized to achieve a significant degree of completeness of backbone resonance assignment.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Murphy, L. O., and Blenis, J. (2006) MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31, 268–275.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, Z., Gibson, T. B., Robinson, F., Silvestro, L., Pearson, G., Xu, B., Wright, A., Vanderbilt, C., and Cobb, M. H. (2001) MAP kinases. Chem. Rev. 101, 2449–2476.

    Article  PubMed  CAS  Google Scholar 

  3. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., and Cobb, M. H. (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Rev. 22, 153–183.

    Article  CAS  Google Scholar 

  4. Fang, J. Y., and Richardson, B. C. (2005) The MAPK signalling pathways and colorectal cancer. The Lancet Oncol. 6, 322–327.

    Article  CAS  Google Scholar 

  5. Kohno, M., and Pouyssegur, J. (2006) Targeting the ERK signaling pathway in cancer therapy. Annal. Med. 38, 200–211.

    Article  CAS  Google Scholar 

  6. Kohno, M., and Pouyssegur, J. (2003) Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Prog. Cell Cyc. Res. 5, 219–224.

    Google Scholar 

  7. Roux, P. P., and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev. 68, 320–344.

    Article  PubMed  CAS  Google Scholar 

  8. Piserchio, A., Dalby, K. N., and Ghose, R. (2012) Expression and Purification of Src-family Kinases for Solution NMR Studies. Meth. Mol. Biol. 831, 111–132.

    Google Scholar 

  9. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. NMR Spectr. 34, 93–158.

    Article  CAS  Google Scholar 

  10. Salzmann, M., Pervushin, K., Wider, G., Senn, H., and Wuthrich, K. (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl. Acad. Sci. USA 95, 13585–13590.

    Article  PubMed  CAS  Google Scholar 

  11. Masterson, L. R., Mascioni, A., Traaseth, N. J., Taylor, S. S., and Veglia, G. (2008) Allosteric cooperativity in protein kinase A. Proc. Natl. Acad. Sci. USA 105, 506–511.

    Article  PubMed  CAS  Google Scholar 

  12. Masterson, L. R., Cheng, C., Yu, T., Tonelli, M., Kornev, A., Taylor, S. S., and Veglia, G. (2010) Dynamics connect substrate recognition to catalysis in protein kinase A. Nature Chem. Biol. 6, 821–828.

    Article  CAS  Google Scholar 

  13. Wiesner, S., Wybenga-Groot, L. E., Warner, N., Lin, H., Pawson, T., Forman-Kay, J. D., and Sicheri, F. (2006) A change in conformational dynamics underlies the activation of Eph receptor tyrosine kinases. EMBO J. 25, 4686–4696.

    Article  PubMed  CAS  Google Scholar 

  14. Vajpai, N., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Manley, P. W., Grzesiek, S., and Jahnke, W. (2008) Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. J. Biol. Chem. 283, 18292–18302.

    Article  PubMed  CAS  Google Scholar 

  15. Vogtherr, M., Saxena, K., Hoelder, S., Grimme, S., Betz, M., Schieborr, U., Pescatore, B., Robin, M., Delarbre, L., Langer, T., Wendt, K. U., and Schwalbe, H. (2006) NMR characterization of kinase p38 dynamics in free and ligand-bound forms. Angew. Chem. Intl. Ed. Engl. 45, 993–997.

    Article  CAS  Google Scholar 

  16. Riek, R., Pervushin, K., and Wuthrich, K. (2000) TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem. Sci. 25, 462–468.

    Article  PubMed  CAS  Google Scholar 

  17. Pervushin, K. (2000) Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys. 33, 161–197.

    Article  PubMed  CAS  Google Scholar 

  18. Langer, T., Vogtherr, M., Elshorst, B., Betz, M., Schieborr, U., Saxena, K., and Schwalbe, H. (2004) NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase. ChemBioChem 5, 1508–1516.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang, F., Strand, A., Robbins, D., Cobb, M. H., and Goldsmith, E. J. (1994) Atomic ­structure of the MAP kinase ERK2 at 2.3 Å resolution. Nature 367, 704–711.

    Article  PubMed  CAS  Google Scholar 

  20. Canagarajah, B. J., Khokhlatchev, A., Cobb, M. H., and Goldsmith, E. J. (1997) Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859–869.

    Article  PubMed  CAS  Google Scholar 

  21. Shen, Y., and Bax, A. (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302.

    Article  PubMed  CAS  Google Scholar 

  22. Fushman, D., Xu, R., and Cowburn, D. (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15  N NMR relaxation in Abl SH(32). Biochemistry 38, 10225–10230.

    Article  PubMed  CAS  Google Scholar 

  23. Piserchio, A., Nair, P. A., Shuman, S., and Ghose, R. (2010) Solution NMR studies of Chlorella virus DNA ligase-adenylate. J. Mol. Biol. 395, 291–308.

    Article  PubMed  CAS  Google Scholar 

  24. Wüthrich, K. (1986) NMR of proteins and nucleic acids, John Wiley and Sons, New York.

    Google Scholar 

  25. Muchmore, D. C., McIntosh, L. P., Russell, C. B., Anderson, D. E., and Dahlquist, F. W. (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Meth. Ezymnol. 177, 44–73.

    Article  CAS  Google Scholar 

  26. Englander, J., Cohen, L., Arshava, B., Estephan, R., Becker, J. M., and Naider, F. (2006) Selective labeling of a membrane peptide with 15  N-amino acids using cells grown in rich medium. Biopolymers 84, 508–518.

    Article  PubMed  CAS  Google Scholar 

  27. LeMaster, D. M., and Cronan, J. E., Jr. (1982) Biosynthetic production of 13  C-labeled amino acids with site-specific enrichment. J. Biol. Chem. 257, 1224–1230.

    PubMed  CAS  Google Scholar 

  28. Takeuchi, K., Ng, E., Malia, T. J., and Wagner, G. (2007) 1-13  C amino acid selective labeling in a 2H15N background for NMR studies of large proteins. J. Biomol. NMR 38, 89–98.

    Article  PubMed  CAS  Google Scholar 

  29. Vogel-Claude, P., Schafer, G., and Trommer, W. E. (1988) Synthesis of a photoaffinity-spin-labeled derivative of ATP and its first application to F1-ATPase. FEBS Lett. 227, 107–109.

    Article  PubMed  CAS  Google Scholar 

  30. Prowse, C. N., and Lew, J. (2001) Mechanism of activation of ERK2 by dual phosphorylation. J. Biol. Chem. 276, 99–103.

    Article  PubMed  CAS  Google Scholar 

  31. Li, Y., and Palmer, A. G., III. (2010) Narrowing of protein NMR spectral lines broadened by chemical exchange. J. Am. Chem. Soc. 132, 8856–8857.

    Article  PubMed  CAS  Google Scholar 

  32. Piserchio, A., Warthaka, M., Devkota, A. K., Kaoud, T. S., Lee, S., Abramczyk, O., Ren, P., Dalby, K. N., and Ghose R. (2011) Solution NMR insights into docking interactions involving inactive ERK2. Biochemistry, 50, 3660–3672.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the following grants from the National Institutes of Health: GM084278 (to RG), GM059802 (to KND), and 5G12 RR03060 (toward partial support of the NMR facilities at The City College of New York). RG is a member of the New York Structural Biology Center, NYSTAR facility. KND is a recipient of a grant from the Welch Foundation (F-1390). The authors thank Dr. Pia Vogel (SMU) for the kind gift of spin-labeled ATP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranajeet Ghose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Piserchio, A., Dalby, K.N., Ghose, R. (2012). Assignment of Backbone Resonances in a Eukaryotic Protein Kinase – ERK2 as a Representative Example. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics