Skip to main content

Simultaneous Single-Molecule Detection of Endogenous C-5 DNA Methylation and Chromatin Accessibility Using MAPit

  • Protocol
  • First Online:
Chromatin Remodeling

Abstract

Bisulfite genomic sequencing provides a single-molecule view of cytosine methylation states. After deamination, each cloned molecule contains a record of methylation within its sequence. The full power of this technique is harnessed by treating nuclei with an exogenous DNMT prior to DNA extraction. This exogenous methylation marks regions of accessibility and footprints nucleosomes, as well as other DNA-binding proteins. Thus, each cloned molecule records not only the endogenous methylation present (at CG sites, in mammals), but also the exogenous (GC, when using the Chlorella virus protein M.CviPI). We term this technique MAPit, methylation accessibility protocol for individual templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raj A, van Oudenaarden A. (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226

    Article  PubMed  CAS  Google Scholar 

  2. Jones PA, Baylin SB. (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  3. Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP. (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7:Unit 7.9.1–16

    Google Scholar 

  4. Pondugula S, Kladde MP. (2008) Single-molecule analysis of chromatin: changing the view of genomes one molecule at a time. J Cell Biochem 105:330–337

    Article  PubMed  CAS  Google Scholar 

  5. Renbaum P, Abrahamove D, Fainsod A, Wilson G, Rottem S, Razin A. (1990) Cloning, characterization, and expression in Escherichia coli of the gene coding for the CpG DNA from Spiroplasma sp strain MQ-1 (M.Sss I). Nucleic Acids Res 18:1145–1152

    Article  PubMed  CAS  Google Scholar 

  6. Xu M, Kladde MP, Van Etten JL, Simpson RT. (1998) Cloning, characterization and expression of the gene coding for cytosine-5-DNA methyltransferase recognizing GpC sites. Nucleic Acids Res 26:3961–3966

    Article  PubMed  CAS  Google Scholar 

  7. Kladde MP, Xu M, Simpson RT. (1996) Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J. 15:6290–6300

    PubMed  CAS  Google Scholar 

  8. Xu M, Simpson RT, Kladde MP. (1998) Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol Cell Biol 18:1201–1212

    PubMed  CAS  Google Scholar 

  9. Kilgore JA, Hoose SA, Gustafson TL, Porter W, Kladde MP. (2007) Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 41:320–332

    Article  PubMed  CAS  Google Scholar 

  10. Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. (2006) Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 13:256–263

    Article  PubMed  CAS  Google Scholar 

  11. Delmas AL, Riggs BM, Pardo CE, Dyer LM, Darst RP, Izumchenko E, Monroe M, Hakam A, Kladde MP, Siegel EM, Brown KD. (2011) WIF1 is a frequent target for epigenetic silencing in squamous cell carcinoma of the cervix. Carcinogenesis, doi:10.1093/carcin/bgr193

    Article  PubMed  Google Scholar 

  12. Pardo CE, Carr IM, Hoffman CJ, Darst RP, Markham AF, Bonthron DT, Kladde MP. (2010) MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects. Nucleic Acids Res 39:e5

    Article  PubMed  Google Scholar 

  13. Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Egger G, Gal-Yam EN, Jones PA. (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12:432–444

    Article  PubMed  CAS  Google Scholar 

  14. Bell O, Schwaiger M, Oakeley EJ, Lienert F, Beisel C, Stadler MB, Schubeler D. (2010) Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing. Nat Struct Mol Biol 17:894–900

    Article  PubMed  CAS  Google Scholar 

  15. Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA, Liang G. (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6:e1000917

    Article  PubMed  Google Scholar 

  16. Singh J, Klar AJS. (1992) Active genes in yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6:186–196

    Article  PubMed  CAS  Google Scholar 

  17. Kladde MP, Simpson RT. (1996) Chromatin structure mapping in vivo using methyltransferases. Methods Enzymol 274:214–233

    Article  PubMed  CAS  Google Scholar 

  18. Jessen WJ, Dhasarathy A, Hoose SA, Carvin CD, Risinger AL, Kladde MP. (2004) Mapping chromatin structure in vivo using DNA methyltransferases. Methods 33:68–80

    Article  PubMed  CAS  Google Scholar 

  19. Hoose SA, Kladde MP. (2006) DNA methyltransferase probing of DNA-protein interactions. Methods Mol Biol 338:225–244

    PubMed  CAS  Google Scholar 

  20. Pardo C, Hoose SA, Pondugula S, Kladde MP. (2009) DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 523:41–65

    Article  PubMed  CAS  Google Scholar 

  21. Dechassa ML, Sabri A, Pondugula S, Kassabov SR, Chatterjee N, Kladde MP, Bartholomew B. (2010) SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes. Mol Cell 38:590–602

    Article  PubMed  CAS  Google Scholar 

  22. Lowary PT, Widom J. (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  PubMed  CAS  Google Scholar 

  23. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K. (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44

    Article  PubMed  CAS  Google Scholar 

  24. Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C. (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13:686–697

    Article  PubMed  CAS  Google Scholar 

  25. Hashimoto K, Kokubun S, Itoi E, Roach HI. (2007) Improved quantification of DNA ­methylation using methylation-sensitive restriction enzymes and real-time PCR. Epigenetics 2:86–91

    Article  PubMed  Google Scholar 

  26. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93:9821–9826

    Article  PubMed  CAS  Google Scholar 

  27. Smith ZD, Gu H, Bock C, Gnirke A, Meissner A. (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods 48:226–232

    Article  PubMed  CAS  Google Scholar 

  28. Polach KJ, Widom J. (1995) Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254:130–149

    Article  PubMed  CAS  Google Scholar 

  29. Polach KJ, Widom J. (1996) A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol 258:800–812

    Article  PubMed  CAS  Google Scholar 

  30. Fitzgerald DJ, DeLuca C, Berger I, Gaillard H, Sigrist R, Schimmele K, Richmond TJ. (2004) Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J 23:3836–3843

    Article  PubMed  CAS  Google Scholar 

  31. Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. (2004) Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23:2092–2104

    Article  PubMed  CAS  Google Scholar 

  32. Zofall M, Persinger J, Bartholomew B. (2004) Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol Cell Biol 24:10047–10057

    Article  PubMed  CAS  Google Scholar 

  33. Zofall M, Persinger J, Kassabov SR, Bartholomew B. (2006) Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 13:339–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Amber Delmas for advice on troubleshooting BGS. This work was supported by the National Institutes of Health (CA95525 to MPK) as well as the Department of Defense, Breast Cancer Research Program (BC062914, BC087311, and BC097648 to MPK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Kladde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Darst, R.P. et al. (2012). Simultaneous Single-Molecule Detection of Endogenous C-5 DNA Methylation and Chromatin Accessibility Using MAPit. In: Morse, R. (eds) Chromatin Remodeling. Methods in Molecular Biology, vol 833. Humana Press. https://doi.org/10.1007/978-1-61779-477-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-477-3_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-476-6

  • Online ISBN: 978-1-61779-477-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics