Skip to main content

Effective Non-linear Methods for Inferring Genetic Regulation from Time-Series Microarray Gene Expression Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 802))

Abstract

Owing to the quick development of high-throughput techniques and the generation of various “omics” datasets, it creates a prospect of performing the study of genome-wide genetic regulatory networks. Here, we present a sophisticated modelling framework together with the corresponding inference methods for accurately estimating genetic regulation from time-series microarray data. By applying our non-linear model on human p53 microarray expression data, we successfully estimated the activities of transcription factor (TF) p53 as well as identified the activation/inhibition status of p53 to its target genes. The predicted top 317 putative p53 target genes were supported by DNA sequence analysis. Our quantitative model can not only be used to infer the regulatory relationship between TF and its downstream genes but also be applied to estimate the protein activities of TF from the expression levels of its target genes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sun N, Carroll RJ, Zhao H (2006) Bayesian error analysis model for reconstructing transcriptional regulatory networks. Proc Natl Acad Sci USA 103:7988–7993.

    Article  PubMed  CAS  Google Scholar 

  2. Wang J, Cheung LW, Delabie J (2005) New probabilistic graphical models for genetic regulatory networks studies. J Biomed Inform. 38:443–455.

    Article  PubMed  CAS  Google Scholar 

  3. Wang J (2007) A new framework for identifying combinatorial regulation of transcription factors: A case study of the yeast cell cycle. J Biomed Inform. 40:707–725.

    Article  PubMed  CAS  Google Scholar 

  4. de Jong H (2002) Modelling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9:67–103.

    Article  PubMed  Google Scholar 

  5. Barenco M, Tomescu D, Brewer D et al (2006) Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7:R25.

    Article  PubMed  Google Scholar 

  6. Rogers S, Khanin R, Girolami M (2007) Bayesian model-based inference of transcription factor activity. BMC Bioinformatics 8:S2.

    Article  PubMed  Google Scholar 

  7. Goutsias J, Kim S (2006) Stochastic transcriptional regulatory systems with time delay: a mean-field approximation. J. Comput. Biol. 13:1049–1076.

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, Tian T (2010) Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53. BMC Bioinform. 11:36.

    Article  Google Scholar 

  9. Zhao RB, Gish K, Murphy M et al (2000) Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Deve. 14:981–993.

    CAS  Google Scholar 

  10. Wei CL, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219.

    Article  PubMed  CAS  Google Scholar 

  11. Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80.

    Article  PubMed  Google Scholar 

  12. Wang J, Bo TH, Jonassen I et al (2003) Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4:60.

    Article  PubMed  CAS  Google Scholar 

  13. Liu G, Loraine AE, Shigeta R et al (2003) NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res. 31:82–86.

    Article  PubMed  CAS  Google Scholar 

  14. Conesa A, Nueda MJ, Ferrer A et al (2006) maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102.

    Article  PubMed  CAS  Google Scholar 

  15. Ma L, Wagner J, Rice JJ et al (2005) A plausible model for the digital response of p53 to DNA damage. Proc Natl Acad Sci USA 102:14266–14271.

    Article  PubMed  CAS  Google Scholar 

  16. Chipperfield A, Fleming PJ, Pohlheim H (1994) A Genetic Algorithm Toolbox for MATLAB. Proc. Int. Conf. Sys. Engineering: p.200-207.

    Google Scholar 

  17. Kho PS, Wang Z, Zhuang L et al (2004) p53-regulated Transcriptional Program Associated with Genotoxic Stress-induced Apoptosis. J. Biol. Chem. 279:21183–21192.

    Article  PubMed  CAS  Google Scholar 

  18. Wu Q, Kirschmeier P, Hockenberry T et al (2002) Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J. Biol. Chem. 277:36329–36337.

    Article  PubMed  CAS  Google Scholar 

  19. Kwon AT, Hoos HH, Ng R (2003) Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19:905–912.

    Article  PubMed  CAS  Google Scholar 

  20. El-Deiry WS, Kern SE, Pietenpol JA et al (1992) Definition of a consensus binding site for p53. Nat Genet. 1:45–49.

    Article  PubMed  CAS  Google Scholar 

  21. Aach J, Bulyk ML, Church GM et al (2001) Computational comparison of two draft sequences of the human genome. Nature 409:856–859.

    Article  PubMed  CAS  Google Scholar 

  22. Moorman C, Sun LV, Wang J et al (2006) Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc Natl Acad Sci USA 103:12027–12032.

    Article  PubMed  CAS  Google Scholar 

  23. Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: A comparison of global optimization methods. Genome Res. 13:2467–2474.

    Article  PubMed  CAS  Google Scholar 

  24. Tian T, Xu S, Gao J et al (2007) Simulated maximum likelihood method for estimating kinetic rates in genetic regulation. Bioinformatics 23:84–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhai Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, J., Tian, T. (2012). Effective Non-linear Methods for Inferring Genetic Regulation from Time-Series Microarray Gene Expression Data. In: Wang, J., Tan, A., Tian, T. (eds) Next Generation Microarray Bioinformatics. Methods in Molecular Biology, vol 802. Humana Press. https://doi.org/10.1007/978-1-61779-400-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-400-1_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-399-8

  • Online ISBN: 978-1-61779-400-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics