Skip to main content

Safranine as a Fluorescent Probe for the Evaluation of Mitochondrial Membrane Potential in Isolated Organelles and Permeabilized Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

The mitochondrial electrical membrane potential (Δψ) is the main component of the proton motive force (Δp) generated across the inner mitochondrial membrane during electron flow through the respiratory chain. Among the techniques available to assess Δψ, methods that rely on the spectrophotofluorometric responses of dyes are widely employed for whole suspensions of isolated mitochondria or permeabilized cells. Safranine is one of the dyes currently used most often for this purpose. Safranine is a lipophilic cationic dye that undergoes optical shifts upon its potential-dependent distribution between the external medium and the intramitochondrial compartment and on its stacking to inner mitochondrial membrane anionic sites. The association between the optical changes of safranine and the membrane potential allows unknown Δψ values to be estimated from an equation describing their relationship. Here, we describe the use of safranine as a fluorescent indicator of Δψ in isolated mitochondria and digitonin-permeabilized cells. We present suitable conditions to employ safranine as a Δψ indicator.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  2. Holmes FL (1993) Hans Krebs: vol 2: Architect of intermediary metabolism, 1933–1937. Oxford University Press, Oxford

    Google Scholar 

  3. Mitchell P, Moyle J (1967) Respiration-driven proton translocation in rat liver mitochondria. Biochem J 105:1147–1162

    PubMed  CAS  Google Scholar 

  4. Mitchell P, Moyle J (1969) Estimation of membrane potential and pH difference across the cristae membrane of rat liver mitochondria. Eur J Biochem 7:471–484

    Article  PubMed  CAS  Google Scholar 

  5. Reid RA, Moyle J, Mitchell P (1966) Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria. Nature 212:257–258

    Article  PubMed  CAS  Google Scholar 

  6. Nicholls DG (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem 50:305–315

    Article  PubMed  CAS  Google Scholar 

  7. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    Article  PubMed  CAS  Google Scholar 

  8. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  9. Serviddio G, Sastre J (2009) Measurement of mitochondrial membrane potential and proton leak. Methods Mol Biol 594:107–121

    Article  Google Scholar 

  10. Waggoner AS (1979) Dye indicators of membrane potential. Annu Rev Biophys Bioeng 8:47–68

    Article  PubMed  CAS  Google Scholar 

  11. Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  PubMed  CAS  Google Scholar 

  12. Åkerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197

    Article  PubMed  Google Scholar 

  13. Costa AD, Nantes IL, Jezek P, Leite A, Arruda P, Vercesi AE (1999) Plant uncoupling mitochondrial protein activity in mitochondria isolated from tomatoes at different stages of ripening. J Bioenerg Biomembr 31:527–533

    Article  PubMed  CAS  Google Scholar 

  14. Fortes F, Castilho RF, Castiti R, Carnieri EG, Vercesi AE (2001) Ca2+ induces a cyclosporin-A-insensitive permeability transition pore in isolated potato tuber mitochondria mediated by reactive oxygen species. J Bioenerg Biomembr 33:43–51

    Article  PubMed  CAS  Google Scholar 

  15. Valle VGR, Pereira-da-Silva L, Vercesi AE (1986) Undesirable feature of safranine as a probe for mitochondrial membrane potential. Biochem Biophys Res Commun 135:189–195

    Article  PubMed  CAS  Google Scholar 

  16. Castilho RF, Pereira RS, Vercesi AE (1996) Protective effect of safranine on the mitochondrial damage induced by Fe(II)citrate: comparative study with trifluoperazine. Eur J Drug Metab Pharmacokinet 21:17–21

    Article  PubMed  CAS  Google Scholar 

  17. Bassani RA, Fagian MM, Bassani JW, Vercesi AE (1998) Changes in calcium uptake rate by cardiac mitochondria during postnatal development. J Mol Cell Cardiol 30:2013–2023

    Article  PubMed  CAS  Google Scholar 

  18. Maciel EN, Vercesi AE, Castilho RF (2001) Oxidative stress in Ca2+-induced membrane permeability transition in brain mitochondria. J Neurochem 79:1237–1245

    Article  PubMed  CAS  Google Scholar 

  19. Bento LM, Fagian MM, Vercesi AE, Gontijo JA (2007) Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats. Nephrol Dial Transplant 22:2817–2823

    Article  PubMed  CAS  Google Scholar 

  20. Vercesi AE, Bernardes CF, Hoffmann ME, Gadelha FR, Docampo R (1991) Digitonin permeabilization does not affect mitochondrial function and allows the determination of the mitochondrial membrane potential of Trypanosoma cruzi in situ. J Biol Chem 266:14431–14434

    PubMed  CAS  Google Scholar 

  21. Oliveira KA, Zecchin KG, Alberici LC, Castilho RF, Vercesi AE (2008) Simvastatin inducing PC3 prostate cancer cell necrosis mediated by calcineurin and mitochondrial dysfunction. J Bioenerg Biomembr 40:307–314

    Article  PubMed  CAS  Google Scholar 

  22. Fernandes MP, Inada NM, Chiaratti MR, Araújo FF, Meirelles FV, Correia MT, Coelho LC, Alves MJ, Gadelha FR, Vercesi AE (2010) Mechanism of Trypanosoma cruzi death induced by Cratylia mollis seed lectin. J Bioenerg Biomembr. doi:10.1007/s10863-010-9268-9

  23. Zanotti A, Azzone GF (1980) Safranine as membrane potential probe in rat liver mitochondria. Arch Biochem Biophys 201:255–265

    Article  PubMed  CAS  Google Scholar 

  24. Colonna R, Massari S, Azzone GF (1973) The problem of cation-binding sites in the energized membrane of intact mitochondria. Eur J Biochem 34:577–585

    Article  CAS  Google Scholar 

  25. Singh AP, Nicholls P (1984) Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles. Biochim Biophys Acta 777:194–200

    Article  PubMed  CAS  Google Scholar 

  26. Singh AP, Nicholls P (1985) Cyanine and safranine dyes as membrane potential probes in cytochrome c oxidase reconstituded proteoliposomes. J Biochem Biophys Methods 11:95–108

    Article  PubMed  CAS  Google Scholar 

  27. Bunting JR, Phan TV, Kamali E, Dowben RM (1989) Fluorescent cationic probes of mitochondria: metrics and mechanism of interaction. Biophys J 56:979–993

    Article  PubMed  CAS  Google Scholar 

  28. Perevoshchikova IV, Sorochkina AI, Zorov DB, Antonenko YN (2009) Safranine O as a fluorescent probe for mitochondrial membrane potential studied on the single particle level and in suspension. Biochemistry (Mosc) 74:663–671

    Article  CAS  Google Scholar 

  29. Kaplan RS, Pedersen PL (1983) Characterization of phosphate efflux pathways in rat liver mitochondria. Biochem J 212:279–288

    PubMed  CAS  Google Scholar 

  30. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  PubMed  CAS  Google Scholar 

  31. Halestrap AP (1989) The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta 973:355–382

    Article  PubMed  CAS  Google Scholar 

  32. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    Article  PubMed  CAS  Google Scholar 

  33. Beavis AD, Brannan RD, Garlid KD (1985) Swelling and contraction of the mitochondrial matrix. I. A structural interpretation of the relationship between light scattering and matrix volume. J Biol Chem 260:13424–13433

    PubMed  CAS  Google Scholar 

  34. Fiskum G, Craig SW, Decker GL, Lehninger AL (1980) The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci USA 77:3430–3434

    Article  PubMed  CAS  Google Scholar 

  35. Harris EJ, Baum H (1980) Uptake of safranine by cardiac mitochondria. Competition with calcium ions and dependence on anions. Biochem J 192:551–557

    PubMed  CAS  Google Scholar 

  36. Hoppel C, Cooper C (1968) The action of digitonin on rat liver mitochondria. The effects on enzyme content. Biochem J 107:367–375

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are currently supported by grants from the following Brazilian agencies: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Instituto Nacional de Obesidade e Diabetes. T.R.F. and D.R.M. are graduate students supported by FAPESP fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Castilho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Figueira, T.R., Melo, D.R., Vercesi, A.E., Castilho, R.F. (2012). Safranine as a Fluorescent Probe for the Evaluation of Mitochondrial Membrane Potential in Isolated Organelles and Permeabilized Cells. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics