Skip to main content

Measurement of Proton Leak and Electron Leak in Isolated Mitochondria

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

Oxidative phosphorylation is an important energy-conserving mechanism coupling mitochondrial electron transfer to ATP synthesis. Coupling between respiration and phosphorylation is not fully efficient due to proton and electron leaks. In this chapter, methods are presented to measure proton and electron leak activities in isolated mitochondria. The relative strength of a modular kinetic approach to probe oxidative phosphorylation is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholls DG, Ferguson SJ (2002) Bioenergetics 3. Academic Press, London

    Google Scholar 

  2. Brand MD (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem Soc Trans 33:897–904

    Article  PubMed  CAS  Google Scholar 

  3. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767

    Article  PubMed  CAS  Google Scholar 

  4. Affourtit C, Brand MD (2008) Uncoupling protein-2 contributes significantly to high mitochondrial proton leak in INS-1E insulinoma cells and attenuates glucose-stimulated insulin secretion. Biochem J 409:199–204

    Article  PubMed  CAS  Google Scholar 

  5. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  6. Ashour B, Hansford RG (1983) Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Biochem J 214:725–736

    PubMed  CAS  Google Scholar 

  7. Letellier T, Malgat M, Mazat JP (1993) Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Biochim Biophys Acta 1141:58–64

    Article  PubMed  CAS  Google Scholar 

  8. Reynafarje B, Costa LE, Lehninger AL (1985) O2 solubility in aqueous media determined by a kinetic method. Anal Biochem 145:406–418

    Article  PubMed  CAS  Google Scholar 

  9. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217:409–427

    PubMed  CAS  Google Scholar 

  10. Brand MD (1995) Measurement of mitochondrial protonmotive force. In: Brown GC, Cooper CE (eds) Bioenergetics: a practical approach. IRL, Oxford, pp 39–62

    Google Scholar 

  11. Rolfe DFS, Hulbert AJ, Brand MD (1994) Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat. Biochim Biophys Acta 1188:405–416

    Article  PubMed  Google Scholar 

  12. Brand MD (1998) Top-down elasticity analysis and its application to energy metabolism in isolated mitochondria and intact cells. Mol Cell Biochem 184:13–20

    Article  PubMed  CAS  Google Scholar 

  13. Brand MD (1996) Top down metabolic control analysis. J Theor Biol 182:351–360

    Article  PubMed  CAS  Google Scholar 

  14. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed  CAS  Google Scholar 

  15. Treberg JR, Quinlan CL, Brand MD (2010) Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production: a correction using glutathione depletion. FEBS J 277(13):2766–2778

    Article  PubMed  CAS  Google Scholar 

  16. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612

    Article  PubMed  CAS  Google Scholar 

  17. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    Article  PubMed  CAS  Google Scholar 

  18. Lambert AJ, Brand MD (2004) Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 279:39414–39420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Julie Buckingham for useful advice on the preparation of TPMP sleeves.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Brand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Affourtit, C., Quinlan, C.L., Brand, M.D. (2012). Measurement of Proton Leak and Electron Leak in Isolated Mitochondria. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics