Skip to main content

Generation of Lentiviral Vectors for Use in Skeletal Muscle Research

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

Gene therapy is a promising approach for the treatment of a variety of disorders including genetic diseases and cancer. Among the viral vectors used in gene therapy, the lentiviral vector, based on HIV-1, is the only integrative vector able to transduce nondividing cells. The first generation of lentiviral vector was ­established in 1996. Since then, other generations of lentiviral vector packaging systems were developed to improve this first vector. In this chapter, we describe these different packaging systems, the generation of lentiviral vector from productive cells, the 293T cell line, and the transduction of myogenic cells with a lentiviral vector as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  2. Taganov KD, Cuesta I, Daniel R, Cirillo LA, Katz RA, Zaret KS, Skalka AM (2004) Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J Virol 78:5848–5855

    Article  PubMed  CAS  Google Scholar 

  3. Scherdin U, Rhodes K, Breindl M (1990) Transcriptionally active genome regions are preferred targets for retrovirus integration. J Virol 64:907–912

    PubMed  CAS  Google Scholar 

  4. Luciw PA (1996) Human immunodeficiency viruses and their replication, in Fields Virology (Fields, B. N., Knipe, D. M., Howley, P. M., Chanock, R. M., Melnick, J. L., Monath, T. P., Roizman, B., and Straus, S. E.) 3rd ed., pp 1881–1952, Lippincott-Raven Publishers, Philadelphia, PA

    Google Scholar 

  5. Chan DC, Kim, PS (1998) HIV entry and its inhibition. Cell 93:681–684

    Article  PubMed  CAS  Google Scholar 

  6. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257

    Article  PubMed  CAS  Google Scholar 

  7. Cullen BR (1986) Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982

    Article  PubMed  CAS  Google Scholar 

  8. Trono D (1995) HIV accessory proteins: ­leading roles for the supporting cast. Cell 82:189–192

    Article  PubMed  CAS  Google Scholar 

  9. Klimatcheva E, Rosenblatt JD, Planelles V (1999) Lentiviral vectors and gene therapy. Front Biosci 4:D481–496

    Article  PubMed  CAS  Google Scholar 

  10. Zennou V, Petit C, Guetard D, Nerhbass U, Montagnier L, Charneau P (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185

    Article  PubMed  CAS  Google Scholar 

  11. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

  12. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  13. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

  14. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    PubMed  CAS  Google Scholar 

  15. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques P. Tremblay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pichavant, C., Tremblay, J.P. (2012). Generation of Lentiviral Vectors for Use in Skeletal Muscle Research. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics