Skip to main content

Restoring Blood Vessels

  • Chapter
  • First Online:
Tissue Engineering in Regenerative Medicine

Abstract

In surgical repair for heart disease, it is sometimes necessary to fill or replace a pathological tissue or defect with autologous graft tissue or a foreign grafting material. To date, (1) autologous pericardium, (2) allograft, (3) xenograft, and (4) artificial graft (e.g., Dacron, Teflon, Gore-Tex) have been used as graft materials. These grafts, however, lack growth potential, are associated with increased risk of thrombosis and infection, and have limited durability, thus increasing the morbidity and mortality of their application. Vascular tissue engineering is a relatively new concept proposed in the latter half of the 1980s. It aims to produce neotissue from autologous cells with biodegradable polymer as a scaffold by the application of engineering and biological principles. The greatest advantage of tissue constructed by tissue engineering is that the scaffold polymer is completely biodegraded as cells fill the extracellular stroma, and foreign materials do not remain at later time points after transplant. In this review, we provide an overview of our work to demonstrate the advantages of tissue-engineered vascular grafts in animal models and in human clinical applications using autologous cells and biodegradable scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ac-LDL:

Acetylated low-density lipoprotein

EPC:

Endothelial progenitor cell

PTFE:

Polytetrafluoroethylene

References

  1. Wells W, Malas M, Baker CJ, Quardt SM, Barr ML (2003 Aug) Depopulated vena caval homograft: a new venous conduit. J Thorac Cardiovasc Surg 126(2):498–503

    Article  PubMed  Google Scholar 

  2. Giannico S, Hammad F, Amodeo A, Michielon G, Drago F, Turchetta A et al (2006) Clinical outcome of 193 extracardiac Fontan patients: the first 15 years. J Am Coll Cardiol 47(10):2065–2073

    Article  PubMed  Google Scholar 

  3. Petrossian E, Reddy VM, McElhinney DB, Akkersdijk GP, Moore P, Parry AJ et al (1999) Early results of the extracardiac conduit Fontan operation. J Thorac Cardiovasc Surg 117(4):688–696

    Article  PubMed  CAS  Google Scholar 

  4. Homann M, Haehnel JC, Mendler N, Paek SU, Holper K, Meisner H et al (2000) Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardiothorac Surg 17(6):624–630

    Article  PubMed  CAS  Google Scholar 

  5. Stark J (1998) The use of valved conduits in pediatric cardiac surgery. Pediatr Cardiol 19(4):282–288

    Article  PubMed  CAS  Google Scholar 

  6. Cleveland DC, Williams WG, Razzouk AJ, Trusler GA, Rebeyka IM, Duffy L et al (1992) Failure of cryopreserved homograft valved conduits in the pulmonary circulation. Circulation 86(5 Suppl):II150–II153

    PubMed  CAS  Google Scholar 

  7. Jonas RA, Freed MD, Mayer JE Jr, Castaneda AR (1985) Long-term follow-up of patients with synthetic right heart conduits. Circulation 72(3 Pt 2):II77–II83

    PubMed  CAS  Google Scholar 

  8. Bermudez CA, Dearani JA, Puga FJ, Schaff HV, Warnes CA, O’Leary PW et al (2004) Late results of the peel operation for replacement of failing extracardiac conduits. Ann Thorac Surg 77(3):881–887, discussion 8

    Article  PubMed  Google Scholar 

  9. Karamlou T, Ungerleider RM, Alsoufi B, Burch G, Silberbach M, Reller M et al (2005) Oversizing pulmonary homograft conduits does not significantly decrease allograft failure in children. Eur J Cardiothorac Surg 27(4):548–553

    Article  PubMed  Google Scholar 

  10. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  PubMed  CAS  Google Scholar 

  11. Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–545, discussion 45–6

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe M, Shin’oka T, Tohyama S, Hibino N, Konuma T, Matsumura G et al (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7(4):429–439

    Article  PubMed  CAS  Google Scholar 

  13. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T et al (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338

    Article  PubMed  Google Scholar 

  14. Poh M, Boyer M, Solan A, Dahl SL, Pedrotty D, Banik SS et al (2005) Blood vessels engineered from human cells. Lancet 365(9477):2122–2124

    Article  PubMed  Google Scholar 

  15. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  16. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228

    PubMed  CAS  Google Scholar 

  17. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367

    PubMed  CAS  Google Scholar 

  18. Noishiki Y, Tomizawa Y, Yamane Y, Matsumoto A (1996) Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med 2(1):90–93

    Article  PubMed  CAS  Google Scholar 

  19. Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734

    Article  PubMed  Google Scholar 

  20. Hibino N, Shin’oka T, Matsumura G, Ikada Y, Kurosawa H (2005) The tissue-engineered vascular graft using bone marrow without culture. J Thorac Cardiovasc Surg 129(5):1064–1070

    Article  PubMed  Google Scholar 

  21. Matsumura G, Ishihara Y, Miyagawa-Tomita S, Ikada Y, Matsuda S, Kurosawa H et al (2006) Evaluation of tissue-engineered vascular autografts. Tissue Eng 12(11):3075–3083

    Article  PubMed  CAS  Google Scholar 

  22. Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X et al (2008) Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248(3):370–377

    PubMed  Google Scholar 

  23. Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533

    Article  PubMed  Google Scholar 

  24. Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C et al (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436, 6e1–6e2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Shinoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hibino, N., Breuer, C., Shinoka, T. (2011). Restoring Blood Vessels. In: Bernstein, H. (eds) Tissue Engineering in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-322-6_11

Download citation

Publish with us

Policies and ethics