Skip to main content

Rap1 and Integrin Inside-Out Signaling

  • Protocol
  • First Online:
Integrin and Cell Adhesion Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 757))

Abstract

In leukocytes, integrins play important roles in adhesive interactions with endothelium, antigen-presenting cells, and effector functions such as cytotoxicity. This chapter describes methods to study Ras proximity 1 (Rap1), a signaling molecule that has been increasingly recognized as an important regulator of integrin-mediated cell adhesion in the immune system as well as hemostasis. Rap1 is activated by a wide variety of external stimuli including chemokines and antigens. Signaling via Rap1 transmits an inside-out signal to the integrins, thereby increasing adhesiveness to ligands such as immunoglobulin superfamily proteins as well as extracellular matrix proteins and plasma proteins. This process induces leukocyte cell adhesion to the endothelium and antigen-presenting cells. In addition to integrin regulation, activated Rap1 induces cell polarity of lymphocytes, which is coordinated with LFA-1 redistribution to the leading edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bos, J. L., de Rooij, J., and Reedquist, K. A. (2001) Rap1 signaling: Adhering to new models, Nat. Rev. Mol. Cell Biol. 2, 369–377.

    Article  PubMed  CAS  Google Scholar 

  2. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M. (1989) A ras-related gene with transformation suppressor activity, Cell 56, 77–84.

    Article  PubMed  CAS  Google Scholar 

  3. Reedquist, K. A., Ross, E., Koop, E. A., Wolthuis, R. M., Zwartkruis, F. J., van Kooyk, Y., Salmon, M., Buckley, C. D., and Bos, J. L. (2000) The small GTPase, Rap1, mediates CD31-induced integrin adhesion, J. Cell Biol. 148, 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  4. Katagiri, K., Hattori, M., Minato, N., Irie, S., Takatsu, K., and Kinashi, T. (2000) Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-kinase, Mol. Cell. Biol. 20, 1956–1969.

    Article  PubMed  CAS  Google Scholar 

  5. Sebzda, E., Bracke, M., Tugal, T., Hogg, N., and Cantrell, D. A. (2002) Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling, Nat. Immunol. 3, 251–258.

    Article  PubMed  CAS  Google Scholar 

  6. Franke, B., Akkerman, J. W., and Bos, J. L. (1997) Rapid Ca2+−mediated activation of Rap1 in human platelets, EMBO J. 16, 252–259.

    Article  PubMed  CAS  Google Scholar 

  7. McLeod, S. J., Ingham, R. J., Bos, J. L., Kurosaki, T., and Gold, M. R. (1998) Activation of the Rap1 GTPase by the B cell antigen receptor, J. Biol. Chem. 273, 29218–29223.

    Article  PubMed  CAS  Google Scholar 

  8. Ghandour, H., Cullere, X., Alvarez, A., Luscinskas, F. W., and Mayadas, T. N. (2007) Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion, Blood 110, 3682–3690.

    Article  PubMed  CAS  Google Scholar 

  9. Katagiri, K., Hattori, M., Minato, N., and Kinashi, T. (2002) Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses, Mol. Cell. Biol. 22, 1001–1015.

    Article  PubMed  CAS  Google Scholar 

  10. Shimonaka, M., Katagiri, K., Nakayama, T., Fujita, N., Tsuruo, T., Yoshie, O., and Kinashi, T. (2003) Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow, J. Cell Biol. 161, 417–427.

    Article  PubMed  CAS  Google Scholar 

  11. Katagiri, K., Maeda, A., Shimonaka, M., and Kinashi, T. (2003) RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1, Nat. Immunol. 4, 741–748.

    Article  PubMed  CAS  Google Scholar 

  12. Tohyama, Y., Katagiri, K., Pardi, R., Lu, C., Springer, T. A., and Kinashi, T. (2003) The critical cytoplasmic regions of the αL/β2 integrin in Rap1-induced adhesion and migration, Mol. Cell. Biol. 14, 2570–2582.

    Article  CAS  Google Scholar 

  13. Dustin, M. L., and Springer, T. A. (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1, Nature 341, 619–624.

    Article  PubMed  CAS  Google Scholar 

  14. Katagiri, K., Shimonaka, M., and Kinashi, T. (2004) Rap1-mediated LFA-1 activation by the T cell antigen receptor is dependent on PLC-gamma1, J. Biol. Chem. 279, 11875–11881.

    Article  PubMed  CAS  Google Scholar 

  15. Bergmeier, W., Goerge, T., Wang, H. W., Crittenden, J. R., Baldwin, A. C., Cifuni, S. M., Housman, D. E., Graybiel, A. M., and Wagner, D. D. (2007) Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III, J. Clin. Invest. 117, 1699–1707.

    Article  PubMed  CAS  Google Scholar 

  16. Crittenden, J. R., Bergmeier, W., Zhang, Y., Piffath, C. L., Liang, Y., Wagner, D. D., Housman, D. E., and Graybiel, A. M. (2004) CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation, Nat. Med. 10, 982–986.

    Article  PubMed  CAS  Google Scholar 

  17. Pasvolsky, R., Feigelson, S. W., Kilic, S. S., Simon, A. J., Tal-Lapidot, G., Grabovsky, V., Crittenden, J. R., Amariglio, N., Safran, M., Graybiel, A. M., Rechavi, G., Ben-Dor, S., Etzioni, A., and Alon, R. (2007) A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets, J. Exp. Med. 204, 1571–1582.

    PubMed  CAS  Google Scholar 

  18. Li, Y., Yan, J., De, P., Chang, H. C., Yamauchi, A., Christopherson, K. W., 2nd, Paranavitana, N. C., Peng, X., Kim, C., Munugulavadla, V., Kapur, R., Chen, H., Shou, W., Stone, J. C., Kaplan, M. H., Dinauer, M. C., Durden, D. L., and Quilliam, L. A. (2007) Rap1a null mice have altered myeloid cell functions suggesting distinct roles for the closely related Rap1a and 1b proteins, J. Immunol. 179, 8322–8331.

    PubMed  CAS  Google Scholar 

  19. Chrzanowska-Wodnicka, M., Smyth, S. S., Schoenwaelder, S. M., Fischer, T. H., and White, G. C., 2nd. (2005) Rap1b is required for normal platelet function and hemostasis in mice, J. Clin. Invest. 115, 680–687.

    Google Scholar 

  20. Duchniewicz, M., Zemojtel, T., Kolanczyk, M., Grossmann, S., Scheele, J. S., and Zwartkruis, F. J. (2006) Rap1A-deficient T and B cells show impaired integrin-mediated cell adhesion, Mol. Cell. Biol. 26, 643–653.

    Article  PubMed  CAS  Google Scholar 

  21. Chu, H., Awasthi, A., White, G. C., 2nd, Chrzanowska-Wodnicka, M., and Malarkannan, S. (2008) Rap1b regulates B cell development, homing, and T cell-dependent humoral immunity, J. Immunol. 181, 3373–3383.

    PubMed  CAS  Google Scholar 

  22. Katagiri, K., Ohnishi, N., Kabashima, K., Iyoda, T., Takeda, N., Shinkai, Y., Inaba, K., and Kinashi, T. (2004) Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking, Nat Immunol 5, 1045–1051.

    Article  PubMed  CAS  Google Scholar 

  23. Katagiri, K., Katakai, T., Ebisuno, Y., Ueda, Y., Okada, T., and Kinashi, T. (2009) Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes, EMBO J. 28, 1319–1331.

    Article  PubMed  CAS  Google Scholar 

  24. Peterson, E. J., Woods, M. L., Dmowski, S. A., Derimanov, G., Jordan, M. S., Wu, J. N., Myung, P. S., Liu, Q. H., Pribila, J. T., Freedman, B. D., Shimizu, Y., and Koretzky, G. A. (2001) Coupling of the TCR to integrin activation by Slap-130/Fyb, Science 293, 2263–2265.

    Article  PubMed  CAS  Google Scholar 

  25. Griffiths, E. K., Krawczyk, C., Kong, Y. Y., Raab, M., Hyduk, S. J., Bouchard, D., Chan, V. S., Kozieradzki, I., Oliveira-Dos-Santos, A. J., Wakeham, A., Ohashi, P. S., Cybulsky, M. I., Rudd, C. E., and Penninger, J. M. (2001) Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap, Science 293, 2260–2263.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, H., Liu, H., Lu, Y., Lovatt, M., Wei, B., and Rudd, C. E. (2007) Functional defects of SKAP-55-deficient T cells identify a regulatory role for the adaptor in LFA-1 adhesion, Mol. Cell. Biol. 27, 6863–6875.

    Article  PubMed  CAS  Google Scholar 

  27. Menasche, G., Kliche, S., Chen, E. J., Stradal, T. E., Schraven, B., and Koretzky, G. (2007) RIAM links the ADAP/SKAP-55 signaling module to Rap1, facilitating T-cell-receptor-mediated integrin activation, Mol. Cell. Biol. 27, 4070–4081.

    Article  PubMed  CAS  Google Scholar 

  28. Lafuente, E. M., van Puijenbroek, A. A., Krause, M., Carman, C. V., Freeman, G. J., Berezovskaya, A., Constantine, E., Springer, T. A., Gertler, F. B., and Boussiotis, V. A. (2004) RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion, Dev. Cell 7, 585–595.

    Article  PubMed  CAS  Google Scholar 

  29. Han, J., Lim, C. J., Watanabe, N., Soriani, A., Ratnikov, B., Calderwood, D. A., Puzon-McLaughlin, W., Lafuente, E. M., Boussiotis, V. A., Shattil, S. J., and Ginsberg, M. H. (2006) Reconstructing and deconstructing agonist-induced activation of integrin αIIbβ3, Curr. Biol. 16, 1796–1806.

    Article  PubMed  CAS  Google Scholar 

  30. Medeiros, R. B., Dickey, D. M., Chung, H., Quale, A. C., Nagarajan, L. R., Billadeau, D. D., and Shimizu, Y. (2005) Protein kinase D1 and the beta 1 integrin cytoplasmic domain control beta 1 integrin function via regulation of Rap1 activation, Immunity 23, 213–226.

    Article  PubMed  CAS  Google Scholar 

  31. Allen, P. M., and Unanue, E. R. (1984) Differential requirements for antigen processing by macrophages for lysozyme-specific T cell hybridomas, J. Immunol. 132, 1077–1079.

    PubMed  CAS  Google Scholar 

  32. Lombard-Platlet, S., Bertolino, P., Deng, H., Gerlier, D., and Rabourdin-Combe, C. (1993) Inhibition by chloroquine of the class II major histocompatibility complex-restricted presentation of endogenous antigens varies according to the cellular origin of the antigen-presenting cells, the nature of the T-cell epitope, and the responding T cell, Immunology 80, 566–573.

    PubMed  CAS  Google Scholar 

  33. Sanchez-Madrid, F., and del Pozo, M. A. (1999) Leukocyte polarization in cell migration and immune interactions, EMBO J. 18, 501–511.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koko Katagiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Katagiri, K., Kinashi, T. (2011). Rap1 and Integrin Inside-Out Signaling. In: Shimaoka, M. (eds) Integrin and Cell Adhesion Molecules. Methods in Molecular Biology, vol 757. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-166-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-166-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-165-9

  • Online ISBN: 978-1-61779-166-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics