Skip to main content

Microencapsulation of Bioactive Nanoparticles

  • Protocol
  • First Online:
Nanoscale Biocatalysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 743))

  • 1491 Accesses

Abstract

Supported or modified enzymes in the form of mobile nanoparticles are designed for enhanced activities and stabilities; however, their practical operations are dwarfed due to their tiny size which always makes recycling an arduous task and a potential risk to the environment. To overcome such drawbacks, this chapter describes a method for the preparation of a new form of microcapsules, possessing single-cavity compartments and nano-pores in the shell, to encage nanoparticle-based biocatalysts and form cell-like microreactors (CLMRs). The encaged nanoscale catalysts are maintained their high activities as in a bulk-phase solution, while they could be handled as materials of sizes hundreds-fold larger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jia, H., Zhu, G., and Wang, P. (2003) Catalytic behaviors of enzymes attached to nanoparticles: The effect of particle mobility. Biotechnol. Bioeng. 84, 406–414.

    Article  CAS  Google Scholar 

  2. Kang, K., Kan, C., Du, Y., and Liu, D. (2005) Synthesis and properties of soap-free poly(methyl methacrylate-ethyl acrylate-methacrylic acid) latex particles prepared by seeded emulsion polymerization. Eur. Polym. J. 41, 439–445.

    Article  CAS  Google Scholar 

  3. Wang, P. (2006) Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574–579.

    Article  CAS  Google Scholar 

  4. Kim, J., and Grate, J. W. (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3, 1219–1222.

    Article  CAS  Google Scholar 

  5. Kim, J., Grate, J. W., and Wang, P. (2006) Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017–1026.

    Article  CAS  Google Scholar 

  6. Colvin, V. L. (2003) The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21, 1166–1170.

    Article  CAS  Google Scholar 

  7. Kim, J., Jia, H., Lee, C.-W., Chung, S.-W., Kwak, J. H., Shin, Y., Dohnalkova, A., Kim, B.-G., Wang, P., and Grate, J. W. (2006) Single enzyme nanoparticles in nanoporous silica: A hierarchical approach to enzyme stabilization and immobilization. Enzyme Microb. Technol. 39, 474–480.

    Article  CAS  Google Scholar 

  8. Fan, C.-H., and Lee, C.-K. (2001) Purification of D-hydantoinase from adzuki bean and its immobilization for N-carbamoyl-D-phenylglycine production. Biochem. Eng. J. 8, 157–164.

    Article  CAS  Google Scholar 

  9. Ma, G.-H., Su, Z.-G., Omi, S., Sundberg, D., and Stubbs, J. (2003) Microencapsulation of oil with poly (styrene-N,N-dimethylaminoethylaminoethyl methacrylate) by SPG emulsification technique. J. Colloid Interface Sci. 266, 282–294.

    Article  CAS  Google Scholar 

  10. Ma, G.-H., Chen, A.-Y., Su, Z.-G., and Omi, S. (2003) Preparation of uniform hollow polystyrene particles with large voids by a glass-membrane emulsification technique and a subsequent suspension polymerization. J. Appl. Polym. Sci. 87, 244–251.

    Article  CAS  Google Scholar 

  11. Okubo, M., and Minami, H. (1996) Control of hollow size of micron-sized monodispersed polymer particles having a hollow structure. Colloid Polym. Sci. 274, 433–438.

    Article  CAS  Google Scholar 

  12. Ma, G.-H., Omi, S., Dimonie, V. L., Sudol, E. D., and El-Aasser, M. S. (2001) Study of the preparation and mechanism of formation of hollow monodisperse polystyrene microspheres by SPG (Shirasu Porous Glass) emulsification technique. J. Appl. Polym. Sci. 85, 1530–1543.

    Article  Google Scholar 

  13. Okubo, M., Konishi, Y., and Minami, H. (2004) Production of hollow particles by suspension polymerization of divinylbenzene with nonsolvent. Progr. Colloid Polym. Sci. 124, 54–59.

    CAS  Google Scholar 

  14. Okubo, M., Konishi, Y., Inohara, T., and Minami, H. (2002) Production of hollow polymer particles by suspension polymerizations for ethylene glycol dimethacrylate/toluene droplets dissolving styrene-methyl methacrylate copolymers. J. Appl. Polym. Sci. 86, 1087–1091.

    Article  CAS  Google Scholar 

  15. Im, S. H., Jeong, U., and Xia, Y. (2005) Polymer hollow particles with controllable holes in their surfaces. Nat. Mater. 4, 671–675.

    Article  Google Scholar 

  16. George, M., and Abraham, T. E. (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan – A review. J. Control. Release 114, 1–14.

    Article  CAS  Google Scholar 

  17. Seifriz, W. (1925) Studies in emulsions. III–V. J. Phys. Chem. 29, 738–749.

    Article  Google Scholar 

  18. Zydowicz, N., Nzimba-Ganyanad, E., and Zydowicz, N. (2002) Polym. Bull. 47, 457–463.

    Article  CAS  Google Scholar 

  19. Liu, R., Ma, G., Meng, F.-T., and Su, Z.-G. (2005) PMMA microcapsules containing water-soluble dyes obtained by double emulsion/solvent evaporation technique. J. Control. Release 103, 31–43.

    Article  CAS  Google Scholar 

  20. Meng, F. T., Ma, G. H., Qiu, W., and Su, Z. G. (2003) W/O/W double emulsion technique using ethyl acetate as organic solvent: Effects of its diffusion rate on the characteristics of microparticles. J. Control. Release 91, 407–416.

    Article  CAS  Google Scholar 

  21. Engel, R. H., Riggi, S. J., and Fahrenbach, M. J. (1968) Insulin: Intestinal absorption as water-in-oil-in-water emulsions. Nature 219, 856–857.

    Article  CAS  Google Scholar 

  22. Ficheux, M.-F., Bonakdar, L., Leal-Calderon, F., and Bibette, J. (1998) Some stability criteria for double emulsions. Langmuir 14, 2702–2706.

    Article  CAS  Google Scholar 

  23. Florence, A. T., and Whitehill, D. (1981) Some feature of breakdown in water-in-oil-in-water multiple emulsions. J. Colloid Interface Sci. 79, 243–256.

    Article  CAS  Google Scholar 

  24. Shum, H. C., Lee, D., Yoon, I., Kodger, T., and Weitz, D. A. (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24, 7651–7653.

    Article  CAS  Google Scholar 

  25. Wang, P., Sergeeva, M. V., Lim, L., and Dordick, J. S. (1997) Poly(methyl methacrylate) hollow particles by water-in-oil-in-water emulsion polymerization. Nat. Biotechnol. 15, 789–793.

    Article  CAS  Google Scholar 

  26. Omi, S., Katami, K. I., Taguchi, T., Kaneko, K., and Iso, M. (1995) Synthesis of uniform PMMA microspheres employing modified SPG (Shirasu Porous Glass) emulsification technique. Macromol. Symp. 92, 309–320.

    Article  CAS  Google Scholar 

  27. Omi, S., Katami, K. I., Taguchi, T., Kazuyoshi, K., and Iso, M. (1995) Synthesis and applications of porous SPG (Shirasu Porous Glass) microspheres. J. Appl. Polym. Sci. 57, 1013–1024.

    Article  CAS  Google Scholar 

  28. Omi, S. (1996) Preparation of monodisperse microspheres using the Shirasu porous glass emulsification technique. Colloid Surf. A-Physicochem. Eng. Asp. 109, 97–107.

    Article  CAS  Google Scholar 

  29. Zhou, W.-Q., Gu, T.-Y., Su, Z.-G., and Ma, G.-H. (2007) Synthesis of macroporous poly(glycidyl methacrylate) microspheres by surfactant reverse micelles swelling method. Eur. Polym. J. 43, 4493–4502.

    Article  CAS  Google Scholar 

  30. Wang, R.-W., Zhang, Y., Ma, G.-H., and Su, Z.-G. (2006) Modification of poly(glycidyl methacrylate-divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein. Colloid Surf. B-Biointerfaces 51, 93–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Basic Research Program of China (New 973 Program, Contract Nos. 2009CB724705) and Chinese National Science Foundation of China (20576135, 20536050, and 20728607) for their support. The support from Chinese Academy of Sciences for international collaboration is also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gao, F., Wang, P., Ma, G. (2011). Microencapsulation of Bioactive Nanoparticles. In: Wang, P. (eds) Nanoscale Biocatalysis. Methods in Molecular Biology, vol 743. Humana Press. https://doi.org/10.1007/978-1-61779-132-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-132-1_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-131-4

  • Online ISBN: 978-1-61779-132-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics