Skip to main content

Adult Stem Cell Plasticity Revisited

  • Chapter
  • First Online:
Adult Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Cell biologists have long realized that most cells do not live as long as the organisms they comprise; thus, cells in almost every tissue need to be renewed/replaced during the natural lifespan of the organism. Depending on the turnover rate of cells in any given organ, this process can be very frequent or very rare. Epithelial cells in the mouth and the GI tract are exposed to a variety of insults (such as heat, cold, extreme changes in pH, strong spices, etc.) and have a very fast turnover rate; nerve cells get wired during embryonal development and either do not turn over or have a very low turnover rate. The rest of the tissues are somewhere in between. This kind of tissue regeneration relies on undifferentiated tissue-specific stem cells (also known as somatic stem cells) that are found in all adult animals and humans and multiply by cell division. They replenish cells that die from old age and regenerate those that have been damaged.

Scientific interest in adult stem cells has centered on their ability to divide or self-renew indefinitely and generate all the cell types of the organ from which they originate, potentially regenerating the entire organ from a few cells. Unlike embryonic stem cells, the use of adult stem cells in research and therapy is not considered to be controversial as they are derived from adult tissue samples rather than human embryos. They have mainly been studied in humans and model organisms such as mice and rats.

Adult stem cells can potentially be used (1) to help us understand basic biological mechanisms (2) to regenerate aged or damaged tissues, and (3) to improve the health of organs by releasing agents that promote growth or differentiation of cells. Below, I will try to summarize the present knowledge of adult stem cells with regard to their (trans)differentiation abilities. Due to the vast amount of literature available, I will focus on human data when they are available and refer the reader to reviews for more details than I can provide in the space available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM:

Bone marrow

BMSC:

Bone marrow-derived mesenchymal stem cell

DMD:

Duchenne’s muscular dystrophy

EGFP:

Enhanced green fluorescent protein

FISH:

Fluorescent in situ hybridization

GVHD:

Graft versus host disease

HLA:

Human leukocyte antigen

HSC:

Hematopoietic stem cell

References

  • Abbas O, Mahalingam M. (2009) Epidermal stem cells: practical perspectives and potential uses. Br J Dermatol 161:228–236.

    CAS  PubMed  Google Scholar 

  • Abedi M, Foster BM, Wood KD et al (2007). Haematopoietic stem cells participate in muscle regeneration. Br J Haematol 138:792–801.

    PubMed  Google Scholar 

  • Albera C, Polak JM, Janes S et al (2005). Repopulation of human pulmonary epithelium by bone marrow cells: a potential means to promote repair. Tissue Eng 11:1115–1121.

    CAS  PubMed  Google Scholar 

  • Assmus B, Fischer-Rasokat U, Honold J et al (2007). Transcoronary transplantation of functionally competent BMCs is associated with a decrease in natriuretic peptide serum levels and improved survival of patients with chronic postinfarction heart failure: results of the TOPCARE-CHD Registry. Circ Res 100:1234–1241.

    CAS  PubMed  Google Scholar 

  • Austin TW, Lagasse E (2003) Hepatic regeneration from hematopoietic stem cells. Mech Dev 120:131–135.

    CAS  PubMed  Google Scholar 

  • Baer PC, Geiger H (2010) Mesenchymal stem cell interactions with growth factors on kidney repair. Curr Opin Nephrol Hypertens 19:1–6.

    CAS  PubMed  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673.

    CAS  PubMed  Google Scholar 

  • Barrilleaux B, Phinney DG, Prockop DJ et al (2006) Review: ex vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019.

    CAS  PubMed  Google Scholar 

  • Bittner RE, Schofer C, Weipoltshammer K et al (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199:391–396.

    CAS  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217.

    CAS  PubMed  Google Scholar 

  • Bratincsak A, Brownstein MJ, Cassiani-Ingoni R et al (2007) CD45-positive blood cells give rise to uterine epithelial cells in mice. Stem Cells 25:2820–2826.

    CAS  PubMed  Google Scholar 

  • Brazelton TR, Rossi FM, Keshet GI et al (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290:1775–1779.

    CAS  PubMed  Google Scholar 

  • Brittan M, Hunt T, Jeffery R et al (2002) Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut 50:752–757.

    CAS  PubMed  Google Scholar 

  • Camargo FD, Green R, Capetanaki Y et al (2003) Single hematopoietic stem cells generate ­skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527.

    CAS  PubMed  Google Scholar 

  • Camussi G, Deregibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on ­kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19:7–12.

    CAS  PubMed  Google Scholar 

  • Chong AS, Shen J, Tao J et al (2006) Reversal of diabetes in non-obese diabetic mice without spleen cell-derived beta cell regeneration. Science 311:1774–1775.

    CAS  PubMed  Google Scholar 

  • Cogle CR, Yachnis AT, Laywell ED et al (2004) Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet 363:1432–1437.

    CAS  PubMed  Google Scholar 

  • Corbel SY, Lee A, Yi L et al (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9:1528–1532.

    CAS  PubMed  Google Scholar 

  • Crain BJ, Tran SD, Mezey E (2005) Transplanted human bone marrow cells generate new brain cells. J Neurol Sci 233:121–123.

    CAS  PubMed  Google Scholar 

  • Crigler L, Robey RC, Asawachaicharn A et al (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198:54–64.

    CAS  PubMed  Google Scholar 

  • Deng W, Han Q, Liao L et al (2005) Engrafted bone marrow-derived flk-(1+) mesenchymal stem cells regenerate skin tissue. Tissue Eng 11:110–119.

    CAS  PubMed  Google Scholar 

  • Dooner MS, Aliotta JM, Pimentel J et al (2008) Conversion potential of marrow cells into lung cells fluctuates with cytokine-induced cell cycle. Stem Cells Dev 17:207–219.

    CAS  PubMed  Google Scholar 

  • Dorrell C, Grompe M (2005) Liver repair by intra- and extrahepatic progenitors. Stem Cell Rev 1:61–64.

    CAS  PubMed  Google Scholar 

  • Doyonnas R, LaBarge MA, Sacco A et al (2004) Hematopoietic contribution to skeletal muscle regeneration by myelomonocytic precursors. Proc Natl Acad Sci USA 101:13507–13512.

    CAS  PubMed  Google Scholar 

  • Ebihara Y, Masuya M, Larue AC et al (2006) Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp Hematol 34:219–229.

    CAS  PubMed  Google Scholar 

  • Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085.

    CAS  PubMed  Google Scholar 

  • Endler G, Greinix H, Winkler K et al (1999) Genetic fingerprinting in mouthwashes of patients after allogeneic bone marrow transplantation. Bone Marrow Transplant 24:95–98.

    CAS  PubMed  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530.

    CAS  PubMed  Google Scholar 

  • Fuchs E (2009) Finding one’s niche in the skin. Cell Stem Cell 4:499–502.

    CAS  PubMed  Google Scholar 

  • Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613.

    CAS  PubMed  Google Scholar 

  • Gersh BJ, Simari RD, Behfar A et al (2009) Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc 84:876–892.

    CAS  PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A et al (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219.

    CAS  PubMed  Google Scholar 

  • Grompe M (2003) The role of bone marrow stem cells in liver regeneration. Semin Liver Dis 23:363–372.

    PubMed  Google Scholar 

  • Gruh I, Martin U (2009) Transdifferentiation of stem cells: a critical view. Adv Biochem Eng Biotechnol 114:73–106.

    CAS  PubMed  Google Scholar 

  • Guidotti JE, Bregerie O, Robert A et al (2003) Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 278:19095–19101.

    CAS  PubMed  Google Scholar 

  • Gupta S, Rosenberg ME (2008) Do stem cells exist in the adult kidney? Am J Nephrol 28:607–613.

    PubMed  Google Scholar 

  • Gupta S, Verfaillie C, Chmielewski D et al (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62:1285–1290.

    PubMed  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394.

    CAS  PubMed  Google Scholar 

  • Gussoni E, Bennett RR, Muskiewicz KR et al (2002) Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110:807–814.

    CAS  PubMed  Google Scholar 

  • Hematti P, Sloand EM, Carvallo CA et al (2002) Absence of donor-derived keratinocyte stem cells in skin tissues cultured from patients after mobilized peripheral blood hematopoietic stem cell transplantation. Exp Hematol 30:943–949.

    PubMed  Google Scholar 

  • Hess DC, Borlongan CV (2008) Stem cells and neurological diseases. Cell Prolif 41(Suppl 1):94–114.

    PubMed  Google Scholar 

  • Hoang MP, Keady M, Mahalingam M (2009) Stem cell markers (cytokeratin 15, CD34 and nestin) in primary scarring and nonscarring alopecia. Br J Dermatol 160:609–615.

    CAS  PubMed  Google Scholar 

  • Ianus A, Holz GG, Theise ND et al (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111:843–850.

    CAS  PubMed  Google Scholar 

  • Imanishi D, Miyazaki Y, Yamasaki R et al (2007) Donor-derived DNA in fingernails among recipients of allogeneic hematopoietic stem-cell transplants. Blood 110:2231–2234.

    CAS  PubMed  Google Scholar 

  • Imasawa T, Utsunomiya Y, Kawamura T et al. (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409.

    CAS  PubMed  Google Scholar 

  • Ito T, Suzuki A, Imai E et al (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635.

    CAS  PubMed  Google Scholar 

  • Jiang S, Walker L, Afentoulis M et al (2004) Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci USA 101:16891–16896.

    CAS  PubMed  Google Scholar 

  • Kloepper JE, Tiede S, Brinckmann J et al (2008) Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 17:592–609.

    PubMed  Google Scholar 

  • Kodama S, Kuhtreiber W, Fujimura S et al (2003) Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302:1223–1227.

    CAS  PubMed  Google Scholar 

  • Koide Y, Morikawa S, Mabuchi Y et al (2007) Two distinct stem cell lineages in murine bone marrow. Stem Cells 25:1213–1221.

    CAS  PubMed  Google Scholar 

  • Korbling M, Katz RL, Khanna A et al (2002) Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 346:738–746.

    PubMed  Google Scholar 

  • Krause DS (2008) Bone marrow-derived cells and stem cells in lung repair. Proc Am Thorac Soc 5:323–327.

    PubMed  Google Scholar 

  • Krause D, Cantley LG (2005) Bone marrow plasticity revisited: protection or differentiation in the kidney tubule? J Clin Invest 115:1705–1708.

    CAS  PubMed  Google Scholar 

  • Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377.

    CAS  PubMed  Google Scholar 

  • Laflamme MA, Myerson D, Saffitz JE et al (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90:634–640.

    CAS  PubMed  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M et al (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234.

    CAS  PubMed  Google Scholar 

  • Leri A, Kajstura J, Anversa P (2005) Identity deception: not a crime for a stem cell. Physiology (Bethesda) 20:162–168.

    Google Scholar 

  • Li Y, Chopp M (2009) Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett 456:120–123.

    CAS  PubMed  Google Scholar 

  • Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705.

    CAS  PubMed  Google Scholar 

  • Mallet VO, Mitchell C, Mezey E et al (2002) Bone marrow transplantation in mice leads to a minor population of hepatocytes that can be selectively amplified in vivo. Hepatology 35:799–804.

    PubMed  Google Scholar 

  • Mattsson J, Jansson M, Wernerson A et al (2004) Lung epithelial cells and type II pneumocytes of donor origin after allogeneic hematopoietic stem cell transplantation. Transplantation 78:154–157.

    PubMed  Google Scholar 

  • Meignin V, Soulier J, Brau F et al (2004) Little evidence of donor-derived epithelial cells in early digestive acute graft-versus-host disease. Blood 103:360–362.

    CAS  PubMed  Google Scholar 

  • Mezey E (2007) Bone marrow-derived stem cells in neurological diseases: stones or masons? Regen Med 2:37–49.

    PubMed  Google Scholar 

  • Mezey E, Chandross KJ, Harta G et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782.

    CAS  PubMed  Google Scholar 

  • Mezey E, Key S, Vogelsang G et al (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci USA 100:1364–1369.

    CAS  PubMed  Google Scholar 

  • Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24:2319–2345.

    CAS  PubMed  Google Scholar 

  • Mimeault M, Batra SK (2007) Interplay of distinct growth factors during epithelial mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies. Ann Oncol 18:1605–1619.

    CAS  PubMed  Google Scholar 

  • Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4:27–49.

    PubMed  Google Scholar 

  • Mimeault M, Hauke R, Batra SK (2007) Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264.

    CAS  PubMed  Google Scholar 

  • Murata H, Janin A, Leboeuf C et al (2007) Donor-derived cells and human graft-versus-host disease of the skin. Blood 109:2663–2665.

    CAS  PubMed  Google Scholar 

  • Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668.

    CAS  PubMed  Google Scholar 

  • Nishio J, Gaglia JL, Turvey SE et al (2006) Islet recovery and reversal of murine type 1 diabetes in the absence of any infused spleen cell contribution. Science 311:1775–1778.

    CAS  PubMed  Google Scholar 

  • Nygren JM, Jovinge S, Breitbach M et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501.

    CAS  PubMed  Google Scholar 

  • Ogawa M, LaRue AC (2007) Origin of fibroblast colony-forming units. Exp Hematol 35:1319–1320.

    PubMed  Google Scholar 

  • Ogawa M, LaRue AC, Drake CJ (2006) Hematopoietic origin of fibroblasts/myofibroblasts: its pathophysiologic implications. Blood 108:2893–2896.

    CAS  PubMed  Google Scholar 

  • Okamoto R, Yajima T, Yamazaki M et al (2002) Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 8:1011–1017.

    CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001a) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705.

    CAS  PubMed  Google Scholar 

  • Orlic D, Kajstura J, Chimenti S et al (2001b) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349.

    CAS  PubMed  Google Scholar 

  • Pearce L, Lim ZY, Usai M et al (2008) Mixed donor chimaerism in recipient fingernails following reduced-intensity conditioning haematopoietic SCT. Bone Marrow Transplant 42:361–362.

    CAS  PubMed  Google Scholar 

  • Perry AR, Linch DC (1996) The history of bone-marrow transplantation. Blood Rev 10:215–219.

    CAS  PubMed  Google Scholar 

  • Perry TE, Song M, Despres DJ et al (2009) Bone marrow-derived cells do not repair endothelium in a mouse model of chronic endothelial cell dysfunction. Cardiovasc Res 84:317–325.

    CAS  PubMed  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170.

    CAS  PubMed  Google Scholar 

  • Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6:2884–2889.

    CAS  PubMed  Google Scholar 

  • Phinney DG, Isakova I (2005) Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 11:1255–1265.

    CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25:2896–2902.

    PubMed  Google Scholar 

  • Poblet E, Jimenez F, Godinez JM et al (2006) The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol 31:807–812.

    CAS  PubMed  Google Scholar 

  • Popp FC, Piso P, Schlitt HJ et al (2006) Therapeutic potential of bone marrow stem cells for liver diseases. Curr Stem Cell Res Ther 1:411–418.

    CAS  PubMed  Google Scholar 

  • Poulsom R, Forbes SJ, Hodivala-Dilke K et al (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195:229–235.

    CAS  PubMed  Google Scholar 

  • Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15.

    PubMed  Google Scholar 

  • Rath P, Shi H, Maruniak JA et al (2009) Stem cells as vectors to deliver HSV/tk gene therapy for malignant gliomas. Curr Stem Cell Res Ther 4:44–49.

    CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.

    CAS  PubMed  Google Scholar 

  • Rota M, Kajstura J, Hosoda T et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA 104:17783–17788.

    CAS  PubMed  Google Scholar 

  • Rovo A, Gratwohl A (2008) Plasticity after allogeneic hematopoietic stem cell transplantation. Biol Chem 389:825–836.

    CAS  PubMed  Google Scholar 

  • Sadan O, Melamed E, Offen D (2009) Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opin Biol Ther 9:1487–1497.

    CAS  PubMed  Google Scholar 

  • Sell S (2005) Adult stem cell plasticity: introduction to the first issue of stem cell reviews. Stem Cell Rev 1:1–7.

    PubMed  Google Scholar 

  • Shirai K, Sera Y, Bulkeley W et al (2009) Hematopoietic stem cell origin of human fibroblasts: cell culture studies of female recipients of gender-mismatched stem cell transplantation and patients with chronic myelogenous leukemia. Exp Hematol 37:1464–1471.

    CAS  PubMed  Google Scholar 

  • Sinclair RA (1972) Origin of endothelium in human renal allografts. Br Med J 4:15–16.

    CAS  PubMed  Google Scholar 

  • Spyridonidis A, Schmitt-Graff A, Tomann T et al (2004) Epithelial tissue chimerism after human hematopoietic cell transplantation is a real phenomenon. Am J Pathol 164:1147–1155.

    PubMed  Google Scholar 

  • Sugimoto H, Mundel TM, Sund M et al (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 103:7321–7326.

    CAS  PubMed  Google Scholar 

  • Suratt BT, Cool CD, Serls AE et al (2003) Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 168:318–322.

    PubMed  Google Scholar 

  • Suri A, Calderon B, Esparza TJ et al (2006) Immunological reversal of autoimmune diabetes without hematopoietic replacement of beta cells. Science 311:1778–1780.

    CAS  PubMed  Google Scholar 

  • Suzuki T, Nishida M, Futami S et al (2003) Neoendothelialization after peripheral blood stem cell transplantation in humans: a case report of a Tokaimura nuclear accident victim. Cardiovasc Res 58:487–492.

    CAS  PubMed  Google Scholar 

  • Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69:745–749.

    CAS  PubMed  Google Scholar 

  • Taylor HS (2004) Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA 292:81–85.

    CAS  PubMed  Google Scholar 

  • Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545.

    CAS  PubMed  Google Scholar 

  • Theise ND, Nimmakayalu M, Gardner R et al (2000) Liver from bone marrow in humans. Hepatology 32:11–16.

    CAS  PubMed  Google Scholar 

  • Thiede C, Prange-Krex G, Freiberg-Richter J et al (2000) Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transplant 25:575–577.

    CAS  PubMed  Google Scholar 

  • Thiele J, Varus E, Wickenhauser C et al (2004a) Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts. Transplantation 77:1902–1905.

    PubMed  Google Scholar 

  • Thiele J, Varus E, Wickenhauser C et al (2004b) Regeneration of heart muscle tissue: quantification of chimeric cardiomyocytes and endothelial cells following transplantation. Histol Histopathol 19:201–209.

    CAS  PubMed  Google Scholar 

  • Thomas ED (2005) Bone marrow transplantation from the personal viewpoint. Int J Hematol 81:89–93.

    PubMed  Google Scholar 

  • Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256.

    CAS  PubMed  Google Scholar 

  • Tran SD, Pillemer SR, Dutra A et al (2003) Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study. Lancet 361:1084–1088.

    PubMed  Google Scholar 

  • Trempus CS, Morris RJ, Bortner CD et al (2003) Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol 120:501–511.

    CAS  PubMed  Google Scholar 

  • van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290.

    PubMed  Google Scholar 

  • Vaquero J, Zurita M (2009) Bone marrow stromal cells for spinal cord repair: a challenge for contemporary neurobiology. Histol Histopathol 24:107–116.

    CAS  PubMed  Google Scholar 

  • Vassilopoulos G, Wang P-R, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904.

    CAS  PubMed  Google Scholar 

  • Verstappen J, Katsaros C, Torensma R et al (2009) A functional model for adult stem cells in epithelial tissues. Wound Repair Regen 17:296–305.

    PubMed  Google Scholar 

  • Vieyra DS, Jackson KA, Goodell MA (2005) Plasticity and tissue regenerative potential of bone marrow-derived cells. Stem Cell Rev 1:65–69.

    PubMed  Google Scholar 

  • Walker MR, Patel KK, Stappenbeck TS (2009) The stem cell niche. J Pathol 217:169–180.

    CAS  PubMed  Google Scholar 

  • Wang X, Willenbring H, Akkari Y et al (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901.

    CAS  PubMed  Google Scholar 

  • Weimann JM, Charlton CA, Brazelton TR et al (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100:2088–2093.

    CAS  PubMed  Google Scholar 

  • Ying Q-L, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416:545–548.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author is supported by the Division of Intramural Research of the NIDCR, Intramural Research Program, NIH, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Mezey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mezey, E. (2011). Adult Stem Cell Plasticity Revisited. In: Phinney, D. (eds) Adult Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-002-7_5

Download citation

Publish with us

Policies and ethics