Skip to main content

Pluripotent Stem Cells from the Postnatal Testis: Unlocking the Potential of Spermatogonial Stem Cells

  • Chapter
  • First Online:
Male Germline Stem Cells: Developmental and Regenerative Potential

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

While embryonic stem (ES) cells are well known to give rise to tissues comprising all three germ layers, only recently was it shown that cells from the postnatal testis could produce embryonic-like stem cells in culture. The latter, arising in vitro from spermatogonia, can undertake most, if not all, the functions of ES cells. This chapter explores the potential predisposing factors for postnatal germ cells to become pluripotent, including expression of pluripotency-associated genes and epigenetic factors. The major published studies describing the production of ES-like cells from mice and human tissues are reviewed. Finally, we assess the data demonstrating functionality of the differentiated derivatives of ES-like cells. The possible uses of testis-derived stem cells for the study of pluripotency and for regenerative applications is also discussed in comparison to other approaches using ES cells and induced pluripotent stem (ips) cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N & Lovell-Badge R 2003 Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17 126–140.

    Article  PubMed  CAS  Google Scholar 

  • Baba S, Heike T, Umeda K, Iwasa T, Kaichi S, Hiraumi Y, Doi H, Yoshimoto M, Kanatsu-Shinohara M, Shinohara T & Nakahata T 2007 Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells. Stem Cells 25 1375–1383.

    Article  PubMed  CAS  Google Scholar 

  • Barroca V, Lassalle B, Coureuil M, Louis JP, Le PF, Testart J, Allemand I, Riou L & Fouchet P 2009 Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat. Cell Biol. 11 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Behfar A, Perez-Terzic C, Faustino RS, Arrell DK, Hodgson DM, Yamada S, Puceat M, Niederlander N, Alekseev AE, Zingman LV & Terzic A 2007 Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J. Exp. Med. 204 405–420.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL & Lander ES 2006 A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 315–326.

    Article  PubMed  CAS  Google Scholar 

  • Blum B & Benvenisty N 2008 The tumorigenicity of human embryonic stem cells. Adv. Cancer Res. 100 133–158.

    Article  PubMed  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R & Young RA 2005 Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 947–956.

    Article  PubMed  CAS  Google Scholar 

  • Brinster RL & Zimmermann JW 1994 Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91 11298–11302.

    Article  PubMed  CAS  Google Scholar 

  • Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG & Braun RE 2004 Plzf is required in adult male germ cells for stem cell self-renewal. Nat. Genet. 36 647–652.

    Article  PubMed  CAS  Google Scholar 

  • Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S & Smith A 2003 Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring HJ, Mattheus U, Mack A, Wagner HJ, Minger S, Matzkies M, Reppel M, Hescheler J, Sievert KD, Stenzl A & Skutella T 2008 Generation of pluripotent stem cells from adult human testis. Nature 456 344–349.

    Article  PubMed  CAS  Google Scholar 

  • Damjanov I & Solter D 1974 Experimental teratoma. Curr. Top. Pathol. 59 69–130.

    Article  PubMed  CAS  Google Scholar 

  • Dann CT, Alvarado AL, Molyneux LA, Denard BS, Garbers DL & Porteus MH 2008 Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 26 2928–2937.

    Article  PubMed  CAS  Google Scholar 

  • Davis TL, Trasler JM, Moss SB, Yang GJ & Bartolomei MS 1999 Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics 58 18–28.

    Article  PubMed  CAS  Google Scholar 

  • de Jong J, Stoop H, Gillis AJ, van Gurp RJ, van de Geijn GJ, Boer M, Hersmus R, Saunders PT, Anderson RA, Oosterhuis JW & Looijenga LH 2008 Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J. Pathol. 215 21–30.

    Article  PubMed  Google Scholar 

  • de Rooij DG & Mizrak SC 2008 Deriving multipotent stem cells from mouse spermatogonial stem cells: a new tool for developmental and clinical research. Development 135 2207–2213.

    Article  PubMed  Google Scholar 

  • Evans MJ & Kaufman MH 1981 Establishment in culture of pluripotent cells from mouse embryos. Nature 292(5819) 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, Hemberger M & Reik W 2008 Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4 e1000116.

    Article  PubMed  Google Scholar 

  • Glaser T, Opitz T, Kischlat T, Konang R, Sasse P, Fleischmann BK, Engel W, Nayernia K & Brustle O 2008 Adult germ line stem cells as a source of functional neurons and glia. Stem Cells 26 2434–2443.

    Article  PubMed  Google Scholar 

  • Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C, Rone JD, Haddad BR, Gallicano GI & Dym M 2009 Pluripotent stem cells derived from adult human testes. Stem Cells Dev. 18 1115–1126.

    Article  PubMed  Google Scholar 

  • Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W & Hasenfuss G 2006 Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  • Guan K, Wagner S, Unsold B, Maier LS, Kaiser D, Hemmerlein B, Nayernia K, Engel W & Hasenfuss G 2007 Generation of functional cardiomyocytes from adult mouse spermatogonial stem cells. Circ. Res. 100 1615–1625.

    Article  PubMed  CAS  Google Scholar 

  • Gure AO, Stockert E, Scanlan MJ, Keresztes RS, Jager D, Altorki NK, Old LJ & Chen YT 2000 Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc. Natl Acad. Sci. USA 97 4198–4203.

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J & Surani MA 2002 Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117 15–23.

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R & Surani MA 2008 Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452 877–881.

    Article  PubMed  CAS  Google Scholar 

  • Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask SS, Graem N, Skakkebaek NE, Leffers H & Rajpert-De ME 2005 Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology 47 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC & Ling TY 2009 Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB J. 23 2076–2087.

    Article  PubMed  CAS  Google Scholar 

  • Imamura M, Miura K, Iwabuchi K, Ichisaka T, Nakagawa M, Lee J, Kanatsu-Shinohara M, Shinohara T & Yamanaka S 2006 Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells. BMC Dev. Biol. 6 34.

    Article  PubMed  Google Scholar 

  • Izadyar F, Pau F, Marh J, Slepko N, Wang T, Gonzalez R, Ramos T, Howerton K, Sayre C & Silva F 2008 Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135 771–784.

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S & Shinohara T 2003 Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69 612–616.

    Article  PubMed  CAS  Google Scholar 

  • T, Kazuki Y, Toyokuni S, Toyoshima M, Niwa O, Oshimura M, Heike T, Nakahata T, Ishino F, Ogura A & Shinohara T 2004 Generation of pluripotent stem cells from neonatal mouse testis. Cell 119 1001–1012.

    Google Scholar 

  • Kanatsu-Shinohara M, Miki H, Inoue K, Ogonuki N, Toyokuni S, Ogura A & Shinohara T 2005a Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol. Reprod. 72 985–991.

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, Miki H, Takehashi M, Toyokuni S, Shinkai Y, Oshimura M, Ishino F, Ogura A & Shinohara T 2005b Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 132 4155–4163.

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Lee J, Inoue K, Ogonuki N, Miki H, Toyokuni S, Ikawa M, Nakamura T, Ogura A & Shinohara T 2008a Pluripotency of a single spermatogonial stem cell in mice. Biol. Reprod. 78 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Takehashi M & Shinohara T 2008b Brief history, pitfalls, and prospects of mammalian spermatogonial stem cell research. Cold Spring Harb. Symp. Quant. Biol. 73 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E & Sasaki H 2004 Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429 900–903.

    Article  PubMed  CAS  Google Scholar 

  • Kazuki Y, Hoshiya H, Kai Y, Abe S, Takiguchi M, Osaki M, Kawazoe S, Katoh M, Kanatsu-Shinohara M, Inoue K, Kajitani N, Yoshino T, Shirayoshi Y, Ogura A, Shinohara T, Barrett JC & Oshimura M 2008 Correction of a genetic defect in multipotent germline stem cells using a human artificial chromosome. Gene Ther. 15 617–624.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R & Kim KS 2009a Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4 472–476.

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H & Scholer HR 2009b Direct reprogramming of human neural stem cells by OCT4. Nature 461 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Kim JB, Sebastiano V, Wu G, Rauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, Vanden BD, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H & Scholer HR 2009c Oct4-induced pluripotency in adult neural stem cells. Cell 136 411–419

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Tapia N, Wu G, Kim JB, Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B, Hausdorfer K, Sebastiano V, Stehling M, Fleischmann BK, Brustle O, Zenke M & Scholer HR 2009 Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Arauzo-Bravo MJ, Tapia N, Kim J, Lin Q, Bernemann C, Han DW, Gentile L, Reinhardt P, Greber B, Schneider RK, Kliesch S, Zenke M & Scholer HR 2010 Human adult germline stem cells in question. Nature 465 E1.

    Article  PubMed  CAS  Google Scholar 

  • Kossack N, Meneses J, Shefi S, Nguyen HN, Chavez S, Nicholas C, Gromoll J, Turek PJ & Reijo-Pera RA 2009 Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells 27 138–149.

    Article  PubMed  CAS  Google Scholar 

  • Krausz C & Looijenga LH 2008 Genetic aspects of testicular germ cell tumors. Cell Cycle 7 3519–3524.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Avarbock MR & Brinster RL 2004a Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc. Natl Acad. Sci. USA 101 16489–16494.

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Avarbock MR & Brinster RL 2004b Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71 722–731.

    Article  PubMed  CAS  Google Scholar 

  • Kuijk EW, de Gier J, Lopes SM, Chambers I, van Pelt AM, Colenbrander B & Roelen BA 2010 A distinct expression pattern in mammalian testes indicates a conserved role for NANOG in spermatogenesis. PLoS One 5 e10987.

    Article  PubMed  Google Scholar 

  • Li JY, Lees-Murdock DJ, Xu GL & Walsh CP 2004 Timing of establishment of paternal methylation imprints in the mouse. Genomics 84 952–960.

    Article  PubMed  CAS  Google Scholar 

  • Looijenga LH, Stoop H, de Leeuw HP, De Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, van Zoelen EJ, Weber RF, Wolffenbuttel KP, Van DH, Honecker F, Bokemeyer C, Perlman EJ, Schneider DT, Kononen J, Sauter G & Oosterhuis JW 2003 POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res. 63 2244–2250.

    PubMed  CAS  Google Scholar 

  • Loya K, Eggenschwiler R, Ko K, Sgodda M, Andre F, Bleidissel M, Scholer HR & Cantz T 2009 Hepatic differentiation of pluripotent stem cells. Biol. Chem. 390 1047–1055.

    Article  PubMed  CAS  Google Scholar 

  • Mann JR, Gadi I, Harbison ML, Abbondanzo SJ & Stewart CL 1990 Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting. Cell 62 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Zsebo K & Hogan BL 1992 Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70 841–847.

    Article  PubMed  CAS  Google Scholar 

  • Min JY, Yang Y, Converso KL, Liu L, Huang Q, Morgan JP & Xiao YF 2002 Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92 288–296.

    Article  PubMed  Google Scholar 

  • Mizrak SC, Chikhovskaya JV, Sadri-Ardekani H, van Daalen S, Korver CM, Hovingh SE, Roepers-Gajadien HL, Raya A, Fluiter K, de Reijke TM, de la Rosette JJ, Knegt AC, Belmonte JC, van der Veen F, de Rooij DG, Repping S & van Pelt AM 2010 Embryonic stem cell-like cells derived from adult human testis. Hum. Reprod. 25 158–167.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Nabeshima Y & Yoshida S 2007 Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev. Cell 12 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H & Smith A 1998 Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J & Smith AG 2000 Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24 372–376.

    Article  PubMed  CAS  Google Scholar 

  • Oakes CC, La SS, Smiraglia DJ, Robaire B & Trasler JM 2007 Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev. Biol. 307 368–379.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Ohmura M, Tamura Y, Kita K, Ohbo K, Suda T & Kubota Y 2004 Derivation and morphological characterization of mouse spermatogonial stem cell lines. Arch. Histol. Cytol. 67 297–306.

    Article  PubMed  Google Scholar 

  • Ohbo K, Yoshida S, Ohmura M, Ohneda O, Ogawa T, Tsuchiya H, Kuwana T, Kehler J, Abe K, Scholer HR & Suda T 2003 Identification and characterization of stem cells in prepubertal spermatogenesis in mice small star, filled. Dev. Biol. 258 209–225.

    Article  PubMed  CAS  Google Scholar 

  • Ohmura M, Yoshida S, Ide Y, Nagamatsu G, Suda T & Ohbo K 2004 Spatial analysis of germ stem cell development in Oct-4/EGFP transgenic mice. Arch. Histol. Cytol. 67 285–296.

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Ichisaka T & Yamanaka S 2007 Generation of germline-competent induced pluripotent stem cells. Nature 448 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T & Yamanaka S 2008 Generation of mouse induced pluripotent stem cells without viral vectors. Science 322 949–953.

    Article  PubMed  CAS  Google Scholar 

  • Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW & Daley GQ 2008 Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Payne C & Braun RE 2006 Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev. Biol. 293 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Perrett RM, Turnpenny L, Eckert JJ, O’Shea M, Sonne SB, Cameron IT, Wilson DI, Meyts ER & Hanley NA 2008 The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol. Reprod. 78 852–858.

    Article  PubMed  CAS  Google Scholar 

  • Pesce M, Wang X, Wolgemuth DJ & Scholer H 1998 Differential expression of the Oct-4 ­transcription factor during mouse germ cell differentiation. Mech. Dev. 71 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Rajpert-De ME, Hanstein R, Jorgensen N, Graem N, Vogt PH & Skakkebaek NE 2004 Developmental expression of POU5F1 (OCT-3/4) in normal and dysgenetic human gonads. Hum. Reprod. 19 1338–1344.

    Article  Google Scholar 

  • Ryu BY, Kubota H, Avarbock MR & Brinster RL 2005 Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc. Natl Acad. Sci. USA 102 14302–14307.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer CB, Ooi SK, Bestor TH & Bourc’his D 2007 Epigenetic decisions in mammalian germ cells. Science 316 398–399.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz M, Temme A, Senner V, Ebner R, Schwind S, Stevanovic S, Wehner R, Schackert G, Schackert HK, Fussel M, Bachmann M, Rieber EP & Weigle B 2007 Identification of SOX2 as a novel glioma-associated antigen and potential target for T cell-based immunotherapy. Br. J. Cancer 96 1293–1301.

    Article  PubMed  CAS  Google Scholar 

  • Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP & Rafii S 2007 Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Shi YQ, Wang QZ, Liao SY, Zhang Y, Liu YX & Han CS 2006 In vitro propagation of ­spermatogonial stem cells from KM mice. Front. Biosci. 11 2614–2622.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR & Ding S 2008 A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Singla DK, Hacker TA, Ma L, Douglas PS, Sullivan R, Lyons GE & Kamp TJ 2006 Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J. Mol. Cell. Cardiol. 40 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Stadtfeld M, Nagaya M, Utikal J, Weir G & Hochedlinger K 2008 Induced pluripotent stem cells generated without viral integration. Science 322 945–949.

    Article  PubMed  CAS  Google Scholar 

  • Stevens LC 1964 Experimental production of testicular teratomas in mice. Proc. Natl Acad. Sci. USA 52 654–661.

    Article  PubMed  CAS  Google Scholar 

  • Stevens LC & Mackensen JA 1961 Genetic and environmental influences on teratocarcinogenesis in mice. J. Natl Cancer Inst. Monogr 27 443–453.

    Google Scholar 

  • Tadokoro Y, Yomogida K, Ohta H, Tohda A & Nishimune Y 2002 Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech. Dev. 113 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K & Yamanaka S 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 663–676.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M & Yamanaka S 2007 Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2 3081–3089.

    Article  PubMed  CAS  Google Scholar 

  • Tegelenbosch RAJ & de Rooij DG 1993 A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat. Res. 290 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Tokuda M, Kadokawa Y, Kurahashi H & Marunouchi T 2007 CDH1 is a specific marker for undifferentiated spermatogonia in mouse testes. Biol. Reprod. 76 130–141.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan SR, Daley GQ & Gregory RI 2008 Selective blockade of microRNA processing by Lin28. Science 320 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Western P, Maldonado-Saldivia J, Vanden BJ, Hajkova P, Saitou M, Barton S & Surani MA 2005 Analysis of Esg1 expression in pluripotent cells and the germline reveals similarities with Oct4 and Sox2 and differences between human pluripotent cell lines. Stem Cells 23 1436–1442.

    Article  PubMed  CAS  Google Scholar 

  • Wobus AM & Boheler KR 2005 Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev. 85 635–678.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kimura H, Tada M, Nakatsuji N & Tada T 2005 Nanog expression in mouse germ cell development. Gene Expr. Patterns 5 639–646.

    Article  PubMed  CAS  Google Scholar 

  • Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, Hubner K & Scholer HR 1996 Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122 881–894.

    PubMed  CAS  Google Scholar 

  • Yoshimizu T, Sugiyama N, De FM, Yeom YI, Ohbo K, Masuko K, Obinata M, Abe K, Scholer HR & Matsui Y 1999 Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev. Growth Differ. 41 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Young RH 2005 A brief history of the pathology of the gonads. Mod. Pathol. 18(Suppl 2) S3–S17.

    Article  PubMed  Google Scholar 

  • Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer RR & Meistrich ML 2000 Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc. Natl Acad. Sci. USA 97 4683–4688.

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II & Thomson JA 2007 Induced pluripotent stem cell lines derived from human somatic cells. Science 318 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  • Zeineddine D, Papadimou E, Mery A, Menard C & Puceat M 2005 Cardiac commitment of embryonic stem cells for myocardial repair. Methods Mol. Med. 112 175–182.

    PubMed  CAS  Google Scholar 

  • Zheng K, Wu X, Kaestner KH & Wang PJ 2009 The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev. Biol. 9 38.

    Article  PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L & Ding S 2009 Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4 381–384.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Howard Hughes Medical Institute, the Ansary Center for Stem Cell Therapeutics, and National Heart, Lung and Blood Institute grants HL075234, HL059312, and HL084936 (S.R.), and the ASCO Young Investigator Award (M.S.). Marco Seandel is a Stanley and Fiona Druckenmiller New York Stem Cell Foundation Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Seandel or Shahin Rafii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Seandel, M., Falciatori, I., Rafii, S. (2011). Pluripotent Stem Cells from the Postnatal Testis: Unlocking the Potential of Spermatogonial Stem Cells. In: Orwig, K., Hermann, B. (eds) Male Germline Stem Cells: Developmental and Regenerative Potential. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-973-4_2

Download citation

Publish with us

Policies and ethics