Skip to main content

Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 702))

Abstract

Current treatment modalities for soft tissue defects due to various pathologies and trauma include autologous grafting and the use of commercially available fillers. However, these treatment methods are associated with a number of limitations, such as donor site morbidity and volume loss over time. As such, improved therapeutic options are needed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue with an appropriate structure and function. The recent advances in the derivation and characterization of hASCs have led to numerous studies of soft tissue reconstruction. In this chapter, we discuss methods in which our laboratory has used hASCs and silk scaffolds for adipose tissue engineering. The use of naturally occurring and clinically acceptable materials such as silk protein for tissue-engineering applications poses advantages with respect to biocompatibility and mechanical and biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomillion CT and Burg KJ (2006) Stem cells and adipose tissue engineering. Biomaterials 27(36): p. 6052–63.

    Article  PubMed  CAS  Google Scholar 

  2. Dubois SG, et al. (2008) Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods Mol Biol 449: p. 69–79.

    PubMed  Google Scholar 

  3. Choi YS, et al. (2006) Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse. Biochem Biophys Res Commun 345(2): p. 631–7.

    Article  PubMed  CAS  Google Scholar 

  4. Clavijo-Alvarez JA, et al. (2006) A novel perfluoroelastomer seeded with adipose-derived stem cells for soft-tissue repair. Plast Reconstr Surg 118(5): p. 1132–42; discussion 1143–4.

    Article  PubMed  CAS  Google Scholar 

  5. Flynn LE, Prestwich GD, Semple JL, Woodhouse KA (2008) Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds. Biomaterials 29(12): p. 1862–71.

    Article  PubMed  CAS  Google Scholar 

  6. Hong L, Peptan IA, Colpan A, Daw JL (2006) Adipose tissue engineering by human adipose-derived stromal cells. Cells Tissues Organs 183(3): p. 133–40.

    Article  PubMed  CAS  Google Scholar 

  7. Uriel S, et al. (2008) The role of adipose protein derived hydrogels in adipogenesis. Biomaterials 29(27): p. 3712–9.

    Article  PubMed  CAS  Google Scholar 

  8. Hong L, et al. (2007) 17-Beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng 13(6): p. 1197–203.

    Article  PubMed  CAS  Google Scholar 

  9. Mischen BT, et al. (2008) Metabolic and functional characterization of human adipose-derived stem cells in tissue engineering. Plast Reconstr Surg 122(3): p. 725–38.

    Article  PubMed  CAS  Google Scholar 

  10. Wall ME, Bernacki SH, Loboa EG (2007) Effects of serial passaging on the adipogenic and osteogenic differentiation potential of adipose-derived human mesenchymal stem cells. Tissue Eng 13(6): p. 1291–8.

    Article  PubMed  CAS  Google Scholar 

  11. Amos PJ, et al. (2008) IFATS collection: The role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26(10): p. 2682-90.

    Article  PubMed  CAS  Google Scholar 

  12. Flynn L, Prestwich GD, Semple JL, Woodhouse KA (2008) Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds. J Biomed Mater Res A 89(4): p. 929–41.

    Google Scholar 

  13. Hemmrich K, et al. (2005) Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials 26(34): p. 7025–37.

    Article  PubMed  CAS  Google Scholar 

  14. Lin SD, Wang KH, Kao AP (2008) Engineered adipose tissue of predefined shape and dimensions from human adipose-derived mesenchymal stem cells. Tissue Eng Part A 14(5): p. 571–81.

    Article  PubMed  CAS  Google Scholar 

  15. Altman AM, et al. (2008) IFATS Series: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 27(1):p. 250–8.

    Google Scholar 

  16. Lovett M, et al. (2007) Silk fibroin microtubes for blood vessel engineering. Biomaterials 28(35): p. 5271–9.

    Article  PubMed  CAS  Google Scholar 

  17. Meinel L, et al. (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res A 71(1): p. 25–34.

    Article  PubMed  CAS  Google Scholar 

  18. Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res 8(3): p. 209–18.

    Article  PubMed  CAS  Google Scholar 

  19. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL (2006) Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials 27(25): p. 4434–42.

    Article  PubMed  CAS  Google Scholar 

  20. Altman GH, et al. (2003) Silk-based biomaterials. Biomaterials 24(3): p. 401–16.

    Article  PubMed  CAS  Google Scholar 

  21. Horan RL, et al. (2005) In vitro degradation of silk fibroin. Biomaterials 26(17): p. 3385–93.

    Article  PubMed  CAS  Google Scholar 

  22. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3(6): p. 1233–9.

    Article  PubMed  CAS  Google Scholar 

  23. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26(15): p. 2775–85.

    Article  PubMed  CAS  Google Scholar 

  24. Meinel L, et al. (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2): p. 147–55.

    Article  PubMed  CAS  Google Scholar 

  25. Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3): p. 718–26.

    Article  PubMed  CAS  Google Scholar 

  26. Kang JH, Gimble JM, Kaplan DL (2009) In vitro 3D model for human vascularized adipose tissue. Tissue Eng Part A 15(8): p.2227–36

    Google Scholar 

  27. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36): p. 6064–82.

    Article  PubMed  CAS  Google Scholar 

  28. Kang X, Xie Y, Kniss DA (2005) Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds. Tissue Eng 11(3–4): p. 458–68.

    Article  PubMed  CAS  Google Scholar 

  29. Stosich MS, et al. (2007) Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits. Tissue Eng 13(12): p. 2881–90.

    Article  PubMed  CAS  Google Scholar 

  30. Vashi AV, et al. (2008) Adipose differentiation of bone marrow-derived mesenchymal stem cells using Pluronic F-127 hydrogel in vitro. Biomaterials 29(5): p. 573–9.

    Article  PubMed  CAS  Google Scholar 

  31. Weiser B, et al. (2008) In vivo development and long-term survival of engineered adipose tissue depend on in vitro precultivation strategy. Tissue Eng Part A 14(2): p. 275–84.

    Article  PubMed  CAS  Google Scholar 

  32. Fischbach C, et al. (2004) Three-dimensional in vitro model of adipogenesis: Comparison of culture conditions. Tissue Eng 10(1–2): p. 215–29.

    Article  PubMed  CAS  Google Scholar 

  33. Vermette M, et al. (2007) Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 28(18): p. 2850–60.

    Article  PubMed  CAS  Google Scholar 

  34. Kim J, Saidel GM, Kalhan SC (2008) A computational model of adipose tissue metabolism: Evidence for intracellular compartmentation and differential activation of lipases. J Theor Biol 251(3): p. 523–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the NIH P41 Tissue Engineering Resource Center (P41 EB002520) and AFIRM for support of soft tissue engineering research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kaplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Choi, J.H., Bellas, E., Vunjak-Novakovic, G., Kaplan, D.L. (2011). Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds. In: Gimble, J., Bunnell, B. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 702. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61737-960-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-960-4_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-959-8

  • Online ISBN: 978-1-61737-960-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics