Skip to main content

Apoptosis In Vivo

  • Chapter
  • First Online:
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 2122 Accesses

Abstract

Apoptosis is a complex and highly regulated process with numerous and varied biological consequences, it is typically described as a sequence of morphological events that can be easily recognized histologically. In fact, the initial identification and subsequent characterization of apoptosis were based on microscopic observations of its occurrence in vivo. In the early 1970’s, an experimental pathologist recognized variations in the morphology of dead cells. He deduced from these observations that the mechanisms for cell death could likewise differ. This Australian pathologist, Professor John Kerr, made these seminal observations and with his colleagues also devised the name apoptosis to distinguish the process from necrosis. Kerr’s sound morphological observations and interpretations based on those observations are the foundations for the explosion of apoptosis research that has occurred since his original observations. As will be detailed in this chapter, apoptosis can be quantified as a response of normal and tumor tissues to various cancer therapies in specimens from animals and patients treated in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57.

    Article  PubMed  CAS  Google Scholar 

  3. Kerr J, Searle J. Apoptosis: its nature and kinetic role. In: Meyn R, Withers H, editors. Radiation biology in cancer research. New York: Raven Press; 1980. p. 367–84.

    Google Scholar 

  4. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119(3):493–501.

    Article  PubMed  CAS  Google Scholar 

  5. Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res. 1995;55(2):237–41.

    PubMed  CAS  Google Scholar 

  6. Sinicrope FA, Roddey G, McDonnell TJ, Shen Y, Cleary KR, Stephens LC. Increased apoptosis accompanies neoplastic development in the human colorectum. Clin Cancer Res. 1996;2(12):1999–2006.

    PubMed  CAS  Google Scholar 

  7. Sinicrope FA, Roddey G, Lemoine M, et al. Loss of p21WAF1/Cip1 protein expression accompanies progression of sporadic colorectal neoplasms but not hereditary nonpolyposis colorectal cancers. Clin Cancer Res. 1998;4(5):1251–61.

    PubMed  CAS  Google Scholar 

  8. Meyn RE, Stephens LC, Mason KA, Medina D. Radiation-induced apoptosis in normal and pre-neoplastic mammary glands in vivo: significance of gland differentiation and p53 status. Int J Cancer. 1996;65(4):466–72.

    Article  PubMed  CAS  Google Scholar 

  9. Medina D, Stephens LC, Bonilla PJ, et al. Radiation-induced tumorigenesis in preneoplastic mouse mammary glands in vivo: significance of p53 status and apoptosis. Mol Carcinog. 1998;22(3):199–207.

    Article  PubMed  CAS  Google Scholar 

  10. Sivaraman L, Stephens LC, Markaverich BM, et al. Hormone-induced refractoriness to mammary carcinogenesis in Wistar-Furth rats. Carcinogenesis. 1998;19(9):1573–81.

    Article  PubMed  CAS  Google Scholar 

  11. Marin MC, Hsu B, Stephens LC, Brisbay S, McDonnell TJ. The functional basis of c-myc and bcl-2 complementation during multistep lymphomagenesis in vivo. Exp Cell Res. 1995;217(2):240–7.

    Article  PubMed  CAS  Google Scholar 

  12. Hsu B, Marin MC, el-Naggar AK, Stephens LC, Brisbay S, McDonnell TJ. Evidence that c-myc mediated apoptosis does not require wild-type p53 during lymphomagenesis. Oncogene. 1995;11(1):175–9.

    PubMed  CAS  Google Scholar 

  13. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    Article  PubMed  CAS  Google Scholar 

  14. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev. 1992;11(2):95–103.

    Article  PubMed  CAS  Google Scholar 

  15. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology. 1995;21(5):1465–8.

    PubMed  CAS  Google Scholar 

  16. Dive C, Gregory CD, Phipps DJ, Evans DL, Milner AE, Wyllie AH. Analysis and discrimination of necrosis and apoptosis (programmed cell death) by multiparameter flow cytometry. Biochim Biophys Acta. 1992;1133(3):275–85.

    Article  PubMed  CAS  Google Scholar 

  17. Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53(8):1945–51.

    PubMed  CAS  Google Scholar 

  18. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148(7):2207–16.

    PubMed  CAS  Google Scholar 

  19. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994;84(5):1415–20.

    PubMed  CAS  Google Scholar 

  20. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980a;284(5756):555–6.

    Article  PubMed  CAS  Google Scholar 

  21. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(Pt 1):1–16.

    PubMed  CAS  Google Scholar 

  22. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267(5203):1456–62.

    Article  PubMed  CAS  Google Scholar 

  23. Evan G. Cancer – a matter of life and cell death. Int J Cancer. 1997;71(5):709–11.

    Article  PubMed  CAS  Google Scholar 

  24. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  25. McDonnell TJ, Korsmeyer SJ. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14; 18). Nature. 1991;349(6306):254–6.

    Article  PubMed  CAS  Google Scholar 

  26. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335(6189):440–2.

    Article  PubMed  CAS  Google Scholar 

  27. Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev. 2003;17(20):2481–95.

    Article  PubMed  CAS  Google Scholar 

  28. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4(6):327–32.

    PubMed  CAS  Google Scholar 

  29. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647–56.

    Article  PubMed  CAS  Google Scholar 

  30. Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis: doubt no more. Biochim Biophys Acta. 1998;1366(1–2):151–65.

    PubMed  CAS  Google Scholar 

  31. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147–57.

    Article  PubMed  CAS  Google Scholar 

  32. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275(5303):1129–32.

    Article  PubMed  CAS  Google Scholar 

  33. Voehringer DW, Meyn RE. Reversing drug resistance in bcl-2-expressing tumor cells by depleting glutathione. Drug Resist Updat. 1998;1(6):345–51.

    Article  PubMed  CAS  Google Scholar 

  34. Lu X, Lane DP. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Cell. 1993;75(4):765–78.

    Article  PubMed  CAS  Google Scholar 

  35. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51(23 Pt 1):6304–11.

    PubMed  CAS  Google Scholar 

  36. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993;362(6423):847–9.

    Article  PubMed  CAS  Google Scholar 

  37. Clarke AR, Purdie CA, Harrison DJ, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993;362(6423):849–52.

    Article  PubMed  CAS  Google Scholar 

  38. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    Article  PubMed  CAS  Google Scholar 

  39. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991;352(6333):345–7.

    Article  PubMed  CAS  Google Scholar 

  40. Spitz FR, Nguyen D, Skibber JM, Meyn RE, Cristiano RJ, Roth JA. Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res. 1996;2(10):1665–71.

    PubMed  CAS  Google Scholar 

  41. el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–25.

    Article  PubMed  CAS  Google Scholar 

  42. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80(2):293–9.

    Article  PubMed  CAS  Google Scholar 

  43. Gottlieb TM, Oren M. p53 and apoptosis. Semin Cancer Biol. 1998;8(5):359–68.

    Article  PubMed  CAS  Google Scholar 

  44. Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53. Nature. 2009;458(7242):1127–30.

    Article  PubMed  CAS  Google Scholar 

  45. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64.

    Article  PubMed  CAS  Google Scholar 

  46. Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64(20):7183–90.

    Article  PubMed  CAS  Google Scholar 

  47. Stephens LC, King GK, Peters LJ, Ang KK, Schultheiss TE, Jardine JH. Acute and late radiation injury in rhesus monkey parotid glands. Evidence of interphase cell death. Am J Pathol. 1986;124(3):469–78.

    PubMed  CAS  Google Scholar 

  48. Stephens LC, King GK, Peters LJ, Ang KK, Schultheiss TE, Jardine JH. Unique radiosensitivity of serous cells in rhesus monkey submandibular glands. Am J Pathol. 1986a;124(3):479–87.

    PubMed  CAS  Google Scholar 

  49. Stephens LC, Ang KK, Schultheiss TE, King GK, Brock WA, Peters LJ. Target cell and mode of radiation injury in rhesus salivary glands. Radiother Oncol. 1986b;7(2):165–74.

    Article  PubMed  CAS  Google Scholar 

  50. Stephens LC, Schultheiss TE, Price RE, Ang KK, Peters LJ. Radiation apoptosis of serous acinar cells of salivary and lacrimal glands. Cancer. 1991;67(6):1539–43.

    Article  PubMed  CAS  Google Scholar 

  51. Stephens LC, Schultheiss TE, Peters LJ, Ang KK, Gray KN. Acute radiation injury of ocular adnexa. Arch Ophthalmol. 1988;106(3):389–91.

    Article  PubMed  CAS  Google Scholar 

  52. Hendry JH, Potten CS. Intestinal cell radiosensitivity: a comparison for cell death assayed by apoptosis or by a loss of clonogenicity. Int J Radiat Biol Relat Stud Phys Chem Med. 1982;42(6):621–8.

    Article  PubMed  CAS  Google Scholar 

  53. Cece R, Cazzaniga S, Morelli D, et al. Apoptosis of hair follicle cells during doxorubicin-induced alopecia in rats. Lab Invest. 1996;75(4):601–9.

    PubMed  CAS  Google Scholar 

  54. Song S, Lambert PF. Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am J Pathol. 1999;155(4):1121–7.

    Article  PubMed  CAS  Google Scholar 

  55. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8):2013–26.

    Article  PubMed  CAS  Google Scholar 

  56. Weil MM, Stephens LC, Amos CI, Ruifrok AC, Mason KA. Strain difference in jejunal crypt cell susceptibility to radiation-induced apoptosis. Int J Radiat Biol. 1996;70(5):579–85.

    Article  PubMed  CAS  Google Scholar 

  57. Weil MM, Amos CI, Mason KA, Stephens LC. Genetic basis of strain variation in levels of radiation-induced apoptosis of thymocytes. Radiat Res. 1996a;146(6):646–51.

    Article  PubMed  CAS  Google Scholar 

  58. Weil MM, Xia X, Lin Y, Stephens LC, Amos CI. Identification of quantitative trait loci controlling levels of radiation-induced thymocyte apoptosis in mice. Genomics. 1997;45(3):626–8.

    Article  PubMed  CAS  Google Scholar 

  59. Weil MM, Xia C, Xia X, Gu X, Amos CI, Mason KA. A chromosome 15 quantitative trait locus controls levels of radiation-induced jejunal crypt cell apoptosis in mice. Genomics. 2001;72(1):73–7.

    Article  PubMed  CAS  Google Scholar 

  60. Searle J, Lawson TA, Abbott PJ, Harmon B, Kerr JF. An electron-microscope study of the mode of cell death induced by cancer-chemotherapeutic agents in populations of proliferating normal and neoplastic cells. J Pathol. 1975;116(3):129–38.

    Article  PubMed  CAS  Google Scholar 

  61. Stephens LC, Ang KK, Schultheiss TE, Milas L, Meyn RE. Apoptosis in irradiated murine tumors. Radiat Res. 1991a;127(3):308–16.

    Article  PubMed  CAS  Google Scholar 

  62. Stephens LC, Hunter NR, Ang KK, Milas L, Meyn RE. Development of apoptosis in irradiated murine tumors as a function of time and dose. Radiat Res. 1993;135(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  63. Meyn RE, Stephens LC, Ang KK, et al. Heterogeneity in the development of apoptosis in irradiated murine tumours of different histologies. Int J Radiat Biol. 1993;64(5):583–91.

    Article  PubMed  CAS  Google Scholar 

  64. Chyle V, Pollack A, Czerniak B, et al. Apoptosis and downstaging after preoperative radiotherapy for muscle-invasive bladder cancer. Int J Radiat Oncol Biol Phys. 1996;35(2):281–7.

    Article  PubMed  CAS  Google Scholar 

  65. Wheeler JA, Stephens LC, Tornos C, et al. ASTRO Research Fellowship: apoptosis as a predictor of tumor response to radiation in stage IB cervical carcinoma. American Society for Therapeutic Radiology and Oncology. Int J Radiat Oncol Biol Phys. 1995;32(5):1487–93.

    Article  PubMed  CAS  Google Scholar 

  66. Logsdon MD, Meyn RE, Jr., Besa PC, et al. Apoptosis and the Bcl-2 gene family – patterns of expression and prognostic value in stage I and II follicular center lymphoma. Int J Radiat Oncol Biol Phys. 1999;44(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  67. Meyn RE, Stephens LC, Hunter NR, Milas L. Induction of apoptosis in murine tumors by cyclophosphamide. Cancer Chemother Pharmacol. 1994;33(5):410–4.

    Article  PubMed  CAS  Google Scholar 

  68. Meyn RE, Stephens LC, Hunter NR, Milas L. Kinetics of cisplatin-induced apoptosis in murine mammary and ovarian adenocarcinomas. Int J Cancer. 1995;60(5):725–9.

    Article  PubMed  CAS  Google Scholar 

  69. Meyn RE, Stephens LC, Hunter NR, Milas L. Apoptosis in murine tumors treated with chemotherapy agents. Anticancer Drugs. 1995a;6(3):443–50.

    Article  PubMed  CAS  Google Scholar 

  70. Brown JM, Wilson G. Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biol Ther. 2003;2(5):477–90.

    PubMed  CAS  Google Scholar 

  71. Brown JM, Attardi LD. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer. 2005;5(3):231–7.

    Article  PubMed  CAS  Google Scholar 

  72. Meyn RE, Milas L, Ang KK. The role of apoptosis in radiation oncology. Int J Radiat Biol. 2009;85(2):107–15.

    Article  PubMed  CAS  Google Scholar 

  73. Coppola JM, Ross BD, Rehemtulla A. Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res. 2008;14(8):2492–501.

    Article  PubMed  CAS  Google Scholar 

  74. Tait JF. Imaging of apoptosis. J Nucl Med. 2008;49(10):1573–6.

    Article  PubMed  Google Scholar 

  75. Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res. 2002;8(9):2766–74.

    PubMed  CAS  Google Scholar 

  76. Haas RL, de Jong D, Valdes Olmos RA, et al. In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients. Int J Radiat Oncol Biol Phys. 2004;59(3):782–7.

    Article  PubMed  Google Scholar 

  77. Verheij M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev. 2008;27(3):471–80.

    Article  PubMed  Google Scholar 

  78. Blankenberg FG. In vivo imaging of apoptosis. Cancer Biol Ther. 2008;7(10):1525–32.

    Article  PubMed  CAS  Google Scholar 

  79. Belhocine T, Steinmetz N, Li C, Green A, Blankenberg FG. The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat. 2004;3(1):23–32.

    PubMed  CAS  Google Scholar 

  80. Belka C, Jendrossek V, Pruschy M, Vink S, Verheij M, Budach W. Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys. 2004;58(2):542–54.

    Article  PubMed  CAS  Google Scholar 

  81. Vecil GG, Lang FF. Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. J Neurooncol. 2003;65(3):237–46.

    Article  PubMed  Google Scholar 

  82. Swisher SG, Roth JA, Komaki R, et al. Induction of p53-regulated genes and tumor regression in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res. 2003;9(1):93–101.

    PubMed  CAS  Google Scholar 

  83. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5(11):876–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant PO1 CA06294 from the National Cancer Institute, the Wiegand Foundation, the Gilbert H. Fletcher Chair (KKA), the Kathryn O’Connor Research Professorship (REM), and the United Energy Resources Professorship in Cancer Research (LM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Meyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stephens, L.C., Milas, L., Ang, K.K., Mason, K.A., Meyn, R.E. (2011). Apoptosis In Vivo. In: Teicher, B. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-968-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-968-0_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-967-3

  • Online ISBN: 978-1-60761-968-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics