Skip to main content

Animal Models of Alcohol-Induced Dementia

  • Protocol
  • First Online:
Animal Models of Dementia

Part of the book series: Neuromethods ((NM,volume 48))

Abstract

Alcoholic dementia is a disorder characterized by multiple cognitive deficits that include memory impairment associated with one or more cognitive disturbances listed in the present text. First, we characterize the disorder and describe aspects of using nonhuman models for studying specific and particular patterns of behavioral failures and biological dysfunctions found in cases of chronic alcohol consumption. Some kinds of animal models are depicted. Although there is no experimental model that displays all aspects considered as criteria for the diagnosis of alcoholic dementia, an animal model that is considered to be the most satisfactory to study behavioral and neurobiological aspects of this disease is that in which both high/chronic ethanol exposure and thiamine deficiency variables could be controlled. In this chapter, we show that animal models that manipulate only a single recognized etiological factor are less effective to elucidate the multiple influences that lead to alcoholic dementia. We conclude that even considering that only particular aspects of this disease could be approached using experimental animals; these studies can shed light on the biological processes, causing specific and particular patterns of cognitive failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruitenberg A, Van Swieten JC, Witteman JC, Mehta KM, van Duijn CM, Hofman A, Breteler MM (2002) Alcohol consumption and risk of dementia: the Rotterdam Study. Lancet 359(9303):281–286

    PubMed  Google Scholar 

  2. Pfefferbaum A (2004) Alcoholism damages the brain, but does moderate alcohol use? Lancet Neurol 3(3):143–144

    PubMed  Google Scholar 

  3. Robles N, Sabria J (2008) Effects of moderate chronic ethanol consumption on hippocampal nicotinic receptors and associative learning. Neurobiol Learn Mem 89(4):497–503

    PubMed  CAS  Google Scholar 

  4. Balodis IM, Johnsrude IS, Olmstead MC (2007) Intact preference conditioning in acute intoxication despite deficient declarative knowledge and working memory. Alcohol Clin Exp Res 31(11):1800–1810

    PubMed  CAS  Google Scholar 

  5. Weiss E, Marksteiner J (2007) Alcohol-related cognitive disorders with a focus on neuropsychology. Int J Disab Hum Dev 6(4):337–342

    Google Scholar 

  6. Hernandez OH, Vogel-Sprott M, Ke-Aznar VI (2007) Alcohol impairs the cognitive component of reaction time to an omitted stimulus: A replication and an extension. J Stud Alcohol Drugs 68(2):276–281

    PubMed  Google Scholar 

  7. Bartholow BD, Pearson M, Sher KJ, Wieman LC, Fabiani M, Gratton G (2003) Effects of alcohol consumption and alcohol susceptibility on cognition: a psychophysiological examination. Biol Psychol 64(1–2):167–190

    PubMed  Google Scholar 

  8. Wegner AJ, Fahle M (1999) Alcohol and visual performance. Prog Neuro-Psychopharm Biol Psychiatry 23(3):465–482

    CAS  Google Scholar 

  9. Finnigan F, Schulze D, Smalwood J (2007) Alcohol and the wandering mind: A new direction in the study of alcohol on attentional lapses. Int J Disabil Hum Dev 6(2):189–199

    Google Scholar 

  10. Hildebrandt H, Brokate B, Eling P, Lanz M (2004) Response shifting and inhibition, but not working memory, are impaired after long-term heavy alcohol consumption. Neuropsychology18(2):203–211

    PubMed  Google Scholar 

  11. Flannery B, Fishbein D, Krupitsky E, Langevin D, Verbitskaya E, Bland C, Bolla K, Egorova V, Bushara N, Tsoy M, Zvartau E (2007) Gender differences in neurocognitive functioning among alcohol-dependent Russian patients. Alcohol Clin Exp Res 31(5):745–754

    PubMed  Google Scholar 

  12. American Psychiatric Association (1994) Diagnostic criteria from DSM–IV. American Psychiatric Association, Washington, DC

    Google Scholar 

  13. Moriyama Y, Mimura M, Kato M, Kashima H (2006) Primary alcoholic dementia and alcohol-related dementia. Psychogeriatrics 6(3):114–118

    Google Scholar 

  14. Homewood J, Bond NW (1999) Thiamine deficiency and Korsakoff’s syndrome: failure to find memory impairments following nonalcoholic Wernicke’s encephalopathy. Alcohol 19(1):75–84

    PubMed  CAS  Google Scholar 

  15. Butterworth RF (1995) Pathophysiology of alcoholic brain damage – Synergistic effects of alcohol, thiamine-deficiency and alcoholic liver-disease. J Neurochem 65:S202

    Google Scholar 

  16. Harper C (1979) Wernicke’s encephalopathy: a more common disease than realised. A neuropathological study of 51 cases. J Neurol Neurosurg Psychiatry 42(3):226–231

    PubMed  CAS  Google Scholar 

  17. Pfefferbaum A, Sullivan EV, Hedehus M, Adalsteinsson E, Lim KO, Moseley M (2000) In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcohol Clin Exp Res 24(8):1214–1221

    PubMed  CAS  Google Scholar 

  18. Harper C (1998) The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J Neuropathol Exp Neurol 57(2):101–110

    PubMed  CAS  Google Scholar 

  19. Oslin D, Atkinson RM, Smith DM, Hendrie H (1998) Alcohol related dementia: proposed clinical criteria. Int J Geriatr Psychol 13(4):203–212

    CAS  Google Scholar 

  20. Oslin DW, Cary MS (2003) Alcohol-related dementia: validation of diagnostic criteria. Am J Geriatr Psychiatry 11(4):441–447

    PubMed  Google Scholar 

  21. Hoyumpa AM Jr (1980) Mechanisms of thiamine deficiency in chronic alcoholism. Am J Clin Nutr 33(12):2750–2761

    PubMed  CAS  Google Scholar 

  22. Laforenza U, Patrini C, Gastaldi G, Rindi G (1990) Effects of acute and chronic ethanol administration on thiamine metabolizing enzymes in some brain areas and in other organs of the rat. Alcohol Alcohol 25(6):591–603

    PubMed  CAS  Google Scholar 

  23. Pincus JH, Wells K (1972) Regional distribution of thiamine-dependent enzymes in normal and thiamine-deficient brain. Exp Neurol 37(3):495–501

    PubMed  CAS  Google Scholar 

  24. Langlais PJ (1995) Alcohol-related thiamine deficiency impact on cognitive and memory functioning. Alcohol Health Res World 19(2):113–121

    Google Scholar 

  25. Harper C (1983) The incidence of Wernicke’s encephalopathy in Australia – a neuropathological study of 131 cases. J Neurol Neurosurg Psychiatry 46(7):593–598

    PubMed  CAS  Google Scholar 

  26. Victor M (1994) Alcoholic dementia. Can J Neurol Sci 21(2):88–99

    PubMed  CAS  Google Scholar 

  27. Thomson AD, Cook CC, Guerrini I, Sheedy D, Harper C, Marshall EJ (2008) Wernicke’s encephalopathy: ‘Plus ca change, plus c’est la meme chose’. Alcohol Alcohol 43(2):180–186

    PubMed  Google Scholar 

  28. Sechi G, Serra A (2007) Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 6(5):442–455

    PubMed  CAS  Google Scholar 

  29. Chick J (1997) Alcohol and the brain. Curr Opin Psychiatry 10(3):205–210

    Google Scholar 

  30. Kopelman MD (1985) Rates of forgetting in Alzheimer-type dementia and Korsakoffs syndrome. Neuropsychologia 23(5):623–638

    PubMed  CAS  Google Scholar 

  31. Victor M, Adams RD, Collins GH (1989) The Wernicke-Korsakoff syndrome and related neurological disorders due to alcoholism and malnutrition, 2nd edn. F.A.Davis, Philadelphia, PA

    Google Scholar 

  32. Martin PR, Singleton CK, Hiller-Sturmhofel S (2003) The role of thiamine deficiency in alcoholic brain disease. Alcohol Res Health 27(2):134–142

    PubMed  Google Scholar 

  33. Naidoo DP, Bramdev A, Cooper K (1996) Autopsy prevalence of Wernicke’s encephalopathy in alcohol-related disease. S Afr Med J 86(9):1110–1112

    PubMed  CAS  Google Scholar 

  34. He X, Sullivan EV, Stankovic RK, Harper CG, Pfefferbaum A (2007) Interaction of thiamine deficiency and voluntary alcohol consumption disrupts rat corpus callosum ultrastructure. Neuropsychopharmacology 32(10):2207–2216

    PubMed  CAS  Google Scholar 

  35. McIntosh C, Chick J (2004) Alcohol and the nervous system. J Neurol Neurosurg Psychiatry 75:16–21

    Google Scholar 

  36. Tabakoff B, Hoffman PL (2000) Animal models in alcohol research. Alcohol Res Health 24(2):77–84

    PubMed  CAS  Google Scholar 

  37. Cohen NJ, Squire LR (1981) Retrograde-amnesia and remote memory impairment. Neuropsychologia 19(3):337–356

    PubMed  CAS  Google Scholar 

  38. Becker JT, Butters N, Rivoira P, Miliotis P (1986) Asking the right questions: Problem solving in male alcoholics and male alcoholics with Korsakoff’s syndrome. Alcohol Clin Exp Res 10(6):641–646

    PubMed  CAS  Google Scholar 

  39. Milner B, Corkin S, Teuber HL (1968) Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6(3):215–234

    Google Scholar 

  40. Pollonini G, Gao V, Rabe A, Palminiello S, Albertini G, Alberini CM (2008) Abnormal expression of synaptic proteins and neurotrophin-3 in the down syndrome mouse model Ts65Dn. Neuroscience 156(1):99–106

    PubMed  CAS  Google Scholar 

  41. Savvaki M, Panagiotaropoulos T, Stamatakis A, Sargiannidou I, Karatzioula P, Watanabe K, Stylianopoulou F, Karagogeos D, Kleopa KA (2008) Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes. Mol Cell Neurosci 39(3):478–490

    PubMed  CAS  Google Scholar 

  42. Wang Q, Liu Y, Zou X, Wang Q, An M, Guan X, He J, Tong Y, Ji J (2008) The hippocampal proteomic analysis of senescence-accelerated mouse: implications of Uchl3 and mitofilin in cognitive disorder and mitochondria dysfunction in SAMP8. Neurochem Res 33(9):1776–1782

    PubMed  CAS  Google Scholar 

  43. Kesner RP, Novak JM (1982) Serial position curve in rats: role of the dorsal hippocampus. Science 218(4568):173–175

    PubMed  CAS  Google Scholar 

  44. Squire LR, Spanis CW (1984) Long gradient of retrograde amnesia in mice: continuity with the findings in humans. Behav Neurosci 98(2):345–348

    PubMed  CAS  Google Scholar 

  45. Getachew B, Hauser SR, Taylor RE, Tizabi Y (2008) Desipramine blocks alcohol-induced anxiety- and depressive-like behaviors in two rat strains. Pharmacol Biochem Behav 91(1):97–103

    PubMed  CAS  Google Scholar 

  46. Oliveira-Silva IF, Pinto L, Pereira SR, Ferraz VP, Barbosa AJ, Coelho VA, Gualberto FF, Souza VF, Faleiro RR, Franco GC, Ribeiro AM (2007) Age-related deficit in behavioural extinction is counteracted by long-term ethanol consumption: correlation between 5-HIAA/5HT ratio in dorsal raphe nucleus and cognitive parameters. Behav Brain Res 180(2):226–234

    PubMed  CAS  Google Scholar 

  47. Arendt T, Allen Y, Marchbanks RM, Schugens MM, Sinden J, Lantos PL, Gray JA (1989) Cholinergic system and memory in the rat – effects of chronic ethanol, embryonic basal forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain projection system. Neuroscience 33(3): 435–462

    PubMed  CAS  Google Scholar 

  48. Spanagel R (2003) Alcohol addiction research: from animal models to clinics. Best Pract Res Clin Gastroenterol 17(4):507–518

    PubMed  Google Scholar 

  49. Heilig M, Egli M (2008) Models for alcohol dependence: a clinical perspective. Drug Discov Today: Dis Models 2(4):313–318

    Google Scholar 

  50. Koob GE, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    PubMed  Google Scholar 

  51. Spanagel R, Holter SM (2000) Pharmacological validation of a new animal model of alcoholism. J Neural Transm 107(6):669–680

    PubMed  CAS  Google Scholar 

  52. Walker BM, Koob GF (2008) Pharmacological evidence for a motivational role of kappa-­opioid systems in ethanol dependence. Neuropsychopharmacology 33(3):643–652

    PubMed  CAS  Google Scholar 

  53. Dhaher R, Finn D, Snelling C, Hitzemann R (2008) Lesions of the extended amygdala in C57BL/6J mice do not block the ­intermittent ethanol vapor-induced increase in ethanol consumption. Alcohol Clin Exp Res 32(2):197–208

    PubMed  CAS  Google Scholar 

  54. Zhao Y, Weiss F, Zorrilla EP (2007) Remission and resurgence of anxiety-like behavior across protracted withdrawal stages in ethanol-­dependent rats. Alcohol Clin Exp Res 31(9):1505–1515

    PubMed  Google Scholar 

  55. O’Dell LE, Roberts AJ, Smith RT, Koob GF (2004) Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure. Alcohol Clin Exp Res 28(11):1676–1682

    PubMed  Google Scholar 

  56. Funk CK, Zorrilla EP, Lee MJ, Rice KC, Koob GF (2007) Corticotropin-releasing factor 1 antagonists selectively reduce ethanol self-administration in ethanol-dependent rats. Biol Psychiatry 61(1):78–86

    PubMed  CAS  Google Scholar 

  57. Tomlinson D, Wilce P, Bedi KS (1998) Spatial learning ability of rats following differing levels of exposure to alcohol during early postnatal life. Physiol Behav 63(2):205–211

    PubMed  CAS  Google Scholar 

  58. Ehlers CL, Somes C, Li TK, Lumeng L, Hwang BH, Jimenez P, Mathe AA (1999) Calcitonin gene-related peptide (CGRP) levels and alcohol. Int J Neuropsychopharmacol 2(3):173–179

    PubMed  CAS  Google Scholar 

  59. Hodges H, Allen Y, Sinden J, Mitchell SN, Arendt T, Lantos PL, Gray JA (1991) The effects of cholinergic drugs and cholinergic-rich foetal neural transplants on alcohol-induced deficits in radial maze performance in rats. Behav Brain Res 41(1):7–28

    Google Scholar 

  60. Cadete-Leite A, Brandao F, Andrade JP, Ribeiro-da-Silva A, Paula-Barbosa MM (1997) The GABAergic system of the dentate gyrus after withdrawal from chronic alcohol consumption: effects of intracerebral grafting and putative neuroprotective agents. Alcohol Alcohol 32(4):471–484

    PubMed  CAS  Google Scholar 

  61. Carroll MR, Rodd ZA, Murphy JM, Simon JR (2006) Chronic ethanol consumption increases dopamine uptake in the nucleus accumbens of high alcohol drinking rats. Alcohol 40(2):103–109

    PubMed  CAS  Google Scholar 

  62. Christie BR, Swann SE, Fox CJ, Froc D, Lieblich SE, Redila V, Webber A (2005) Voluntary exercise rescues deficits in spatial memory and long-term potentiation in prenatal ethanol-exposed male rats. Eur J Neurosci 21(6):1719–1726

    PubMed  Google Scholar 

  63. Baird TJ, Vanecek SA, Briscoe RJ, Vallett M, Carl KL, Gauvin DV (1998) Moderate, long-term, alcohol consumption potentiates normal, age-related spatial memory deficits in rats. Alcohol Clin Exp Res 22(3):628–636

    PubMed  CAS  Google Scholar 

  64. Byrnes ML, Richardson DP, Brien JF, Reynolds JN, Dringenberg HC (2004) Spatial acquisition in the Morris water maze and ­hippocampal long-term potentiation in the adult guinea pig following brain growth spurt-prenatal ethanol exposure. Neurotoxicol Taratol 26(4):543–551

    CAS  Google Scholar 

  65. Pires RGW, Pereira SRC, Pittella JEH, Franco GC, Ferreira CLM, Fernandes PA, Ribeiro AM (2001) The contribution of mild thiamine deficiency and ethanol consumption to central cholinergic parameter dysfunction and rats’ open-field performance impairment. Pharmacol Biochem Behav 70(2–3):227–235

    PubMed  CAS  Google Scholar 

  66. Eriksson K (1968) Genetic selection for voluntary alcohol consumption in the albino rat. Science 159(3816):739–741

    PubMed  CAS  Google Scholar 

  67. Sinclair JD, Le AD, Kiianmaa K (1989) The AA and ANA rat lines, selected for differences in voluntary alcohol consumption. Experientia 45(9):798–805

    PubMed  CAS  Google Scholar 

  68. Colombo G, Agabio R, Diaz G, Fa M, Lobina C, Reali R, Gessa GL (1997) Sardinian alcohol-preferring rats prefer chocolate and sucrose over ethanol. Alcohol 14(6):611–615

    PubMed  CAS  Google Scholar 

  69. Li TK, Lumeng L, Doolittle DP (1993) Selective breeding for alcohol preference and associated responses. Behav Genet 23(2):163–170

    PubMed  CAS  Google Scholar 

  70. Ghozland S, Chu K, Kieffer BL, Roberts AJ (2005) Lack of stimulant and anxiolytic-like effects of ethanol and accelerated development of ethanol dependence in mu-opioid receptor knockout mice. Neuropharmacology 49(4):493–501

    PubMed  CAS  Google Scholar 

  71. Thiele TE, Naveilhan P, Ernfors P (2004) Assessment of ethanol consumption and water drinking by NPY Y(2) receptor knockout mice. Peptides 25(6):975–983

    PubMed  CAS  Google Scholar 

  72. Han DH, Lyool IK, Sung YH, Lee SH, Renshaw PE (2008) The effect of acamprosate on alcohol and food craving in patients with alcohol dependence. Drug Alcohol Depend 93(3):279–283

    PubMed  CAS  Google Scholar 

  73. Snyder JL, Bowers TG (2008) The efficacy of acamprosate and naltrexone in the treatment of alcohol dependence: a relative benefits analysis of randomized controlled trials. Am J Drug Alcohol Abuse 34(4):449–461

    PubMed  Google Scholar 

  74. Zalewska-Kaszubska J, Gorska D, Dyr W, Czarnecka E (2008) Effect of chronic acamprosate treatment on voluntary alcohol intake and beta-endorphin plasma levels in rats selectively bred for high alcohol preference. Neurosci Lett 431(3):221–225

    PubMed  CAS  Google Scholar 

  75. Savage LM, Chang Q, Gold PE (2003) Diencephalic damage decreases hippocampal acetylcholine release during spontaneous alternation testing. Learn Mem 10(4):242–246

    PubMed  Google Scholar 

  76. Langlais PJ, Savage LM (1995) Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with ­tissue loss in diencephalon, cortex and white matter. Behav Brain Res 68(1):75–89

    PubMed  CAS  Google Scholar 

  77. Haas RH (1988) Thiamine and the brain. Annu Rev Nutr 8:483–515

    PubMed  CAS  Google Scholar 

  78. Ciccia RM, Langlais PJ (2000) An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcohol Clin Exp Res 24(5):622–634

    PubMed  CAS  Google Scholar 

  79. Pfefferbaum A, Adalsteinsson E, Bell RL, Sullivan EV (2007) Development and resolution of brain lesions caused by pyrithiamine- and dietary-induced thiamine deficiency and alcohol exposure in the alcohol-preferring rat: a longitudinal magnetic resonance imaging and spectroscopy study. Neuropsychopharmacology 32(5):1159–1177

    PubMed  CAS  Google Scholar 

  80. Dixon G, Harper CG (2001) Quantitative analysis of glutamic acid decarboxylase-immunoreactive neurons in the anterior thalamus of the human brain. Brain Res 923(1–2):39–44

    PubMed  CAS  Google Scholar 

  81. Harper C (1979) Wernicke’s encephalopathy: a more common disease than realised. A neuropathological study of 51 cases. J Neurol Neurosurg Psychiatry 42(3):226–231

    PubMed  CAS  Google Scholar 

  82. Pires RGW, Pereira SRC, Oliveira-Silva IF, Franco GC, Ribeiro AM (2005) Cholinergic parameters and the retrieval of learned and re-learned spatial information: a study using a model of Wernicke-Korsakoff Syndrome. Behav Brain Res 162(1):11–21

    PubMed  CAS  Google Scholar 

  83. Pires RGW, Pereira SRC, Carvalho FM, Oliveira-Silva IF, Ferraz VP, Ribeiro AM (2007) Correlation between phosphorylation level of a hippocampal 86 kDa protein and extinction of a behaviour in a model of Wernicke-Korsakoff syndrome. Behav Brain Res 180(1):102–106

    PubMed  CAS  Google Scholar 

  84. Ragozzino ME, Wilcox C, Raso M, Kesner RP (1999) Involvement of rodent prefrontal cortex subregions in strategy switching. Behav Neurosci 113(1):32–41

    PubMed  CAS  Google Scholar 

  85. Delatour B, Gisquet-Verrier P (2000) Functional role of rat prelimbic-infralimbic cortices in spatial memory: evidence for their involvement in attention and behavioural flexibility. Behav Brain Res 109(1):113–128

    PubMed  CAS  Google Scholar 

  86. Dias R, Aggleton JP (2000) Effects of selective excitotoxic prefrontal lesions on acquisition of nonmatching- and matching-to-place in the T-maze in the rat: differential involvement of the prelimbic-infralimbic and anterior cingulate cortices in providing behavioural flexibility. Eur J Neurosci 12(12):4457–4466

    PubMed  CAS  Google Scholar 

  87. Carvalho FM, Pereira SRC, Pires RGW, Ferraz VP, Romano-Silva MA, Oliveira-Silva LF, Ribeiro AM (2006) Thiamine deficiency decreases glutamate uptake in the prefrontal cortex and impairs spatial memory performance in a water maze test. Pharmacol Biochem Behav 83(4):481–489

    PubMed  CAS  Google Scholar 

  88. Mason ST (1983) The neurochemistry and pharmacology of extinction behavior. Neurosci Biobehav Rev 7(3):325–347

    PubMed  CAS  Google Scholar 

  89. Robbins TW (1997) Arousal systems and attentional processes. Biol Psychol 45(1–3): 57–71

    PubMed  CAS  Google Scholar 

  90. Parikh V, Sarter M (2008) Cholinergic mediation of attention – contributions of phasic and tonic increases in prefrontal cholinergic activity. Mol Biophys Mech Arousal Alertness Atten 1129:225–235

    CAS  Google Scholar 

  91. Bainbridge NK, Koselke LR, Jeon J, Bailey KR, Wess J, Crawley JN, Wrenn CC (2008) Learning and memory impairments in a congenic C57BL/6 strain of mice that lacks the M-2 muscarinic acetylcholine receptor subtype. Behav Brain Res 190(1):50–58

    PubMed  CAS  Google Scholar 

  92. Pauli WM, O’Reilly RC (2008) Attentional control of associative learning – a possible role of the central cholinergic system. Brain Res 1202:43–53

    PubMed  CAS  Google Scholar 

  93. Keverne J, Ray M (2008) Neurochemistry of Alzheimer’s disease. Psychiatry 7(1):6–8

    Google Scholar 

  94. Nardone R, Bergmann J, Tezzon F, Ladurner G, Golaszewski S (2008) Cholinergic dysfunction in subcortical ischaemic vascular dementia: a transcranial magnetic stimulation study. J Neural Transm 115(5):737–743

    PubMed  CAS  Google Scholar 

  95. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol 61(2):101–108

    PubMed  CAS  Google Scholar 

  96. Mair RG, Anderson CD, Langlais PJ, McEntee WJ (1988) Behavioral impairments, brain-lesions and monoaminergic activity in the rat following recovery from a bout of thiamine-deficiency. Behav Brain Res 27(3):223–239

    PubMed  CAS  Google Scholar 

  97. Overstreet DH, Russell RW (1984) Selective breeding for differences in cholinergic function - sex-differences in the genetic-regulation of sensitivity to the anticholinesterase, Dfp. Behav Neural Biol 40(2):227–238

    PubMed  CAS  Google Scholar 

  98. Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–417

    PubMed  CAS  Google Scholar 

  99. Gill SK, Ishak M, Dobransky T, Haroutunian V, Davis KL, Rylett RJ (2007) 82-kDa choline acetyltransferase is in nuclei of ­cholinergic neurons in human CNS and altered in aging and Alzheimer disease. Neurobiol Aging 28(7):1028–1040

    PubMed  CAS  Google Scholar 

  100. Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 27(3):654–670

    PubMed  Google Scholar 

  101. Garcia-Alloza M, Zaldua N, ez-Ariza M, Marcos B, Lasheras B, Javier Gil-Bea F, Ramirez MJ (2006) Effect of selective cholinergic denervation on the serotonergic system: implications for learning and memory. J Neuropathol Exp Neurol 65(11):1074–1081

    PubMed  CAS  Google Scholar 

  102. Arendt T, Henning D, Gray JA, Marchbanks R (1988) Loss of neurons in the rat basal forebrain cholinergic projection system after prolonged intake of ethanol. Brain Res Bull 21(4):563–569

    PubMed  CAS  Google Scholar 

  103. Floyd EA, Young-Seigler AC, Ford BD, Reasor JD, Moore EL, Townsel JG, Rucker HK (1997) Chronic ethanol ingestion produces cholinergic hypofunction in rat brain. Alcohol 14(1):93–98

    PubMed  CAS  Google Scholar 

  104. Sugimoto H (2008) The new approach in development of anti-Alzheimer’s disease drugs via the cholinergic hypothesis. Chem Biol Interact 175(1–3):204–208

    PubMed  CAS  Google Scholar 

  105. Tumiatti V, Bolognesi ML, Minarini A, Rosini M, Milelli A, Matera R, Melchiorre C (2008) Progress in acetylcholinesterase inhibitors for Alzheimer’s disease: an update. Expert Opin Ther Pat 18(4):387–401

    CAS  Google Scholar 

  106. Brousseau G, Rourke BP, Burke B (2007) Acetylcholinesterase inhibitors, neuropsychiatric symptoms, and Alzheimer’s disease subtypes: an alternate hypothesis to global cognitive enhancement. Exp Clin Psychopharmacol 15(6):546–554

    PubMed  Google Scholar 

  107. Kim KY, Ke V, Adkins LM (2004) Donepezil for alcohol-related dementia: a case report. Pharmacotherapy 24(3):419–421

    PubMed  Google Scholar 

  108. Cochrane M, Cochrane A, Jauhar P, Ashton E (2005) Acetylcholinesterase inhibitors for the treatment of Wernicke-Korsakoff syndrome – three further cases show response to donepezil. Alcohol Alcohol 40(2):151–154

    PubMed  CAS  Google Scholar 

  109. Dong H, Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG (2005) Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease. Psychopharmacology (Berl) 181(1):145–152

    CAS  Google Scholar 

  110. Mohammed AH (1993) Effects of cholinesterase inhibitors on learning and memory in rats: a brief review with special reference to THA. Acta Neurol Scand Suppl 149:13–15

    PubMed  CAS  Google Scholar 

  111. Melcer T, Gonzalez D, Somes C, Riley EP (1995) Neonatal alcohol exposure and early development of motor-skills in alcohol-preferring and nonpreferring rats. Neurotoxicol Taratol 17(2):103–110

    CAS  Google Scholar 

  112. Meyer LS, Kotch LE, Riley EP (1990) Alterations in gait following ethanol exposure during the brain growth spurt in rats. Alcohol-Clin Exp Res 14(1):23–27

    PubMed  CAS  Google Scholar 

  113. Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adole­scent rats. Eur J Neurosci 25(2):541–550

    PubMed  Google Scholar 

  114. Borlikova GG, Elbers NA, Stephens DN (2006) Repeated withdrawal from ethanol spares contextual fear conditioning and spatial learning but impairs negative patterning and induces over-responding: evidence for effect on frontal cortical but not hippocampal function? Eur J Neurosci 24(1):205–216

    PubMed  Google Scholar 

  115. Santín LJ, Rubio S, Begega A, Arias JL (2000) Effects of chronic alcohol consumption on spatial reference and working memory tasks. Alcohol 20(2):149–159

    PubMed  Google Scholar 

  116. Slawecki CJ (2006) Two-choice reaction time performance in Sprague-Dawley rats exposed to alcohol during adolescence or adulthood. Behav Pharmacol 17(7):605–614

    PubMed  Google Scholar 

  117. Borde N, Jaffard R, Beracochea DJ (1996) Effects of methyl beta-carboline-3-carboxylate on memory impairments induced by chronic alcohol consumption in mice. Prog Neuropsychopharmacol Biol Psychiatry 20(8):1377–1387

    PubMed  CAS  Google Scholar 

  118. Borde N, Beracochea DJ (1999) Effects of diazepam or chronic alcohol treatment on spatial reversal learning in mice. Pharmacol Biochem Behav 62(4):719–725

    PubMed  CAS  Google Scholar 

  119. Beracochea D, Micheau J, Jaffard R (1992) Memory deficits following chronic alcohol consumption in mice: relationships with hippocampal and cortical cholinergic activities. Pharmacol Biochem Behav 42(4):749–753

    PubMed  CAS  Google Scholar 

  120. Gal K, Bardos G (1994) The effect of chronic alcohol treatment on the radial maze performance of rats. Neuroreport 5(4):421–424

    PubMed  CAS  Google Scholar 

  121. Casamenti F, Scali C, Vannucchi MG, Bartolini L, Pepeu G (1993) Long-term ­ethanol consumption by rats: effect on ­acetylcholine release in vivo, choline acetyltransferase activity, and behavior. Neuroscience 56(2):465–471

    PubMed  CAS  Google Scholar 

  122. Garcia-Moreno LM, Conejo NM, Capilla A, Garcia-Sanchez O, Senderek K, Arias JL (2002) Chronic ethanol intake and object recognition in young and adult rats. Prog Neuropsychopharmacol Biol Psychiatry 26(5):831–837

    PubMed  CAS  Google Scholar 

  123. Pereira SRC, Menezes GA, Franco GC, Costa AEB, Ribeiro AM (1998) Chronic ethanol consumption impairs spatial remote memory in rats but does not affect cortical cholinergic parameters. Pharmacol Biochem Behav 60(2):305–311

    PubMed  CAS  Google Scholar 

  124. Fadda F, Cocco S, Stancampiano R, Rossetti ZL (1999) Long-term voluntary ethanol consumption affects neither spatial nor passive avoidance learning, nor hippocampal acetylcholine release in alcohol-preferring rats. Behav Brain Res 103(1):71–76

    PubMed  CAS  Google Scholar 

  125. Farr SA, Scherrer JF, Banks WA, Flood JF, Morley JE (2005) Chronic ethanol consumption impairs learning and memory after cessation of ethanol. Alcohol Clin Exp Res 29(6):971–982

    PubMed  Google Scholar 

  126. Irle E, Markowitsch HJ (1983) Widespread neuroanatomical damage and learning-deficits following chronic alcohol-consumption or vitamin-B1 (Thiamine) deficiency in rats. Behav Brain Res 9(3):277–294

    PubMed  CAS  Google Scholar 

  127. White AM, Bae JG, Truesdale MC, Ahmad S, Wilson WA, Swartzwelder HS (2002) Chronic-intermittent ethanol exposure during adolescence prevents normal developmental changes in sensitivity to ethanol-induced motor impairments. Alcohol Clin Exp Res 26(7):960–968

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ribeiro, A.M., Pereira, S.R.C. (2011). Animal Models of Alcohol-Induced Dementia. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics