Skip to main content

Animals Models of Normal Pressure Hydrocephalus

  • Protocol
  • First Online:
Animal Models of Dementia

Part of the book series: Neuromethods ((NM,volume 48))

  • 1493 Accesses

Abstract

Normal Pressure Hydrocephalus (NPH) is a syndrome of dementia, gait disturbances, and urinary incontinence affecting the elderly population. Neuroimaging shows ventriculomegaly, and from the 70s to the early 90s invasive testing of intracranial pressure (ICP) and cerebrospinal fluid (CSF) dynamics supported the concept of a disturbed CSF circulation in those patients. Implantation of ventricular shunts has shown considerable symptomatic improvement in individuals; however, age-related comorbidity and coexisting dementias, such Alzheimer’s disease (AD) and subcortical arteriosclerotic encephalopathy (SAE), have conflicted both clinical diagnosis of the syndrome and outcome to treatment. Moreover, a pathological continuum co-existing in the dementias of SAE, AD, and NPH has been proposed more recently, as blood flow and CSF biomarker studies as well as brain biopsies taken at the time of shunt implantation have evidenced the role of chronic ischemia and white-matter disease in NPH patients and biopsies were classified as “Probable AD” according to the Consortium to establish a registry of Alzheimer’s disease (CERAD). Aging has shown to be a main risk factor to NPH, but also to AD and SAE, and as the population is aging in both the developed and developing countries, the prevalence of NPH dementia is very likely to increase. As such, research aspects aim at an understanding of the comorbidity, and how it impacts the diagnosis, pathophysiology, and the outcome of NPH. Certainly, NPH has to be seen from the multi- and transdisciplinary perspective, and experimental models are needed to model the interaction of hydrocephalus with risk factors of aging, and the coexisting dementias. The kaolin-induced hydrocephalus model allows preselection of age, manipulation of the disease progress in animals, and modeling of a chronic and long-term hydrocephalus condition, as existing in NPH. Kaolin, an inert silica derivate, creates a CSF malabsorption through scar formation, when injected into the subarachnoidal cisterns. A progressive ventricular enlargement follows a transient increase in ICP, ventricles remain enlarged while ICP normalized, similar to the human condition. Kaolin hydrocephalus induced in the aging 12-months-old rat has supported both, AD- and SAE-pathological correlates the longer the hydrocephalus existed in the animals: a mild but chronic “sublethal” ischemia has been evidenced by C-14-Jodo-Autoradiographic blood flow studies, and intracerebral and perivascular accumulation of Aβ 1–40, Aβ 1–42 peptides and hyperphosphorylated TAU proteins were observed through qualitative and quantitative histology. An age-related CSF circulatory dysfunction and reduced CSF turnover with a subsequent failure to clear Aβ 1–40, Aβ 1–42, and other toxic metabolites out from the brain interstitial fluid was therefore suggested as a common pathological element in NPH and NPH coexisting with AD and SAE. Further evidence to a common element of metabolic failure existing in those dementias was supported by significant breakdown of blood-brain-barrier (BBB) receptors in the aging Kaolin-rat, the best characterized being the low-density-lipoprotein-related protein 1 (LRP-1), which allows Aβ to escape the brain through the capillary border. With aging, Aβ LRP-1 transport is reduced by 50%.

Finally, shunt treatment in Kaolin-hydrocephalus has shown that “irreversibility” in the hydrocephalic brain lies in the damage of “ischemia vulnerable” brain regions, such as the CA1 sector of the hippocampus. Changes in synaptophysin and neurofilament immunohistochemistry of CA1 have correlated with histological changes of “delayed neuronal death” and occurred early in the course of hydrocephalus. This warrants a timely shunting of patients. The studies in aging kaolin-induced hydrocephalus might allow insight into late-life disturbances in CSF circulation, CSF turnover, and BBB transport underlying several age-related dementias, including AD. This reconsiders the traditional concept of “shunts for dementia”; however, both clinical and experimental hydrocephalus research should embrace the multidisciplinary aspect as it might allow and bring further insight into the interaction of ICP, impaired CSF circulation, blood flow, and metabolic breakdown in the various dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2(4):307–327

    PubMed  CAS  Google Scholar 

  2. Salmon JH, Armitage JL (1968) Surgical treatment of hydrocephalus ex-vacuo. Ventri- culoatrial shunt for degenerative brain disease. Neurology 18(12):1223–1226

    PubMed  CAS  Google Scholar 

  3. Petersen RC, Mokri B, Laws ER Jr (1985) Surgical treatment of idiopathic hydrocephalus in elderly patients. Neurology 35(3):307–311

    PubMed  CAS  Google Scholar 

  4. Ojemann RG, Fisher CM, Adams RD, Sweet WH, New PF (1969) Further experience with the syndrome of “normal” pressure hydrocephalus. J Neurosurg 31(3):279–294

    PubMed  CAS  Google Scholar 

  5. Fisher CM (1977) The clinical picture in occult hydrocephalus. Clin Neurosurg 24:270–284

    PubMed  CAS  Google Scholar 

  6. Bergsneider M, Black PM, Klinge P, Marmarou A, Relkin N (2005) Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S29–S39

    PubMed  Google Scholar 

  7. Klinge P, Marmarou A, Bergsneider M, Relkin N, Black PM (2005) Outcome of shunting in idiopathic normal-pressure hydrocephalus and the value of outcome assessment in shunted patients. Neurosurgery 57(3 Suppl):S40–S52

    PubMed  Google Scholar 

  8. Krauss JK, Regel JP, Vach W, Droste DW, Borremans JJ, Mergner T (1996) Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke 27(1):24–29

    PubMed  CAS  Google Scholar 

  9. Malm J, Kristensen B, Stegmayr B, Fagerlund M, Koskinen LO (2000) Three-year survival and functional outcome of patients with idiopathic adult hydrocephalus syndrome. Neurology 55(4):576–578

    PubMed  CAS  Google Scholar 

  10. Raftopoulos C, Massager N, Baleriaux D, Deleval J, Clarysse S, Brotchi J (1996) Prospective analysis by computed tomography and long-term outcome of 23 adult patients with chronic idiopathic hydrocephalus. Neurosurgery 38(1):51–59

    PubMed  CAS  Google Scholar 

  11. Savolainen S, Hurskainen H, Paljarvi L, Alafuzoff I, Vapalahti M (2002) Five-year outcome of normal pressure hydrocephalus with or without a shunt: predictive value of the clinical signs, neuropsychological evaluation and infusion test. Acta Neurochir (Wien) 144(6):515–523

    CAS  Google Scholar 

  12. Aygok G, Marmarou A, Young HF (2005) Three-year outcome of shunted idiopathic NPH patients. Acta Neurochir Suppl 95:241–245

    PubMed  CAS  Google Scholar 

  13. McGirt MJ, Williams MA, Rigamonti D (2007) Diagnosis, Treatment, and Analysis of Long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 60(1):E208

    Google Scholar 

  14. Marmarou A, Bergsneider M, Relkin N, Klinge P, Black PM (2005) Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery 57(3 Suppl):S1–S3

    PubMed  Google Scholar 

  15. Bech-Azeddine R, Waldemar G, Knudsen GM, Hogh P, Bruhn P, Wildschiodtz G, et al (2001) Idiopathic normal-pressure hydrocephalus: evaluation and findings in a multidisciplinary memory clinic. Eur J Neurol 8(6):601–611

    PubMed  CAS  Google Scholar 

  16. Tisell M, Hoglund M, Wikkelso C (2005) National and regional incidence of surgery for adult hydrocephalus in Sweden. Acta Neurol Scand 112(2):72–75

    PubMed  CAS  Google Scholar 

  17. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S4–S16

    PubMed  Google Scholar 

  18. Shapiro K, Marmarou A, Shulman K (1980) Characterization of clinical CSF dynamics and neural axis compliance using the pressure-­volume index: I. The normal pressure-volume index. Ann Neurol 7(6):508–514

    PubMed  CAS  Google Scholar 

  19. Shulman K, Marmarou A (1968) Analysis of intracranial pressure in hydrocephalus. Dev Med Child Neurol Suppl-6

    Google Scholar 

  20. Borgesen SE, Gjerris F, Srensen SC (1978) The resistance to cerebrospinal fluid absorption in humans. A method of evaluation by lumbo-ventricular perfusion, with particular reference to normal pressure hydrocephalus. Acta Neurol Scand 57(1):88–96

    PubMed  CAS  Google Scholar 

  21. Borgesen SE, Gjerris F (1987) Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow. J Neurosurg 67(4):535–539

    PubMed  CAS  Google Scholar 

  22. Borgesen SE (1984) Conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir (Wien) 71(1–2):1–45

    CAS  Google Scholar 

  23. Tullberg M, Hultin L, Ekholm S, Mansson JE, Fredman P, Wikkelso C (2002) White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol Scand 105(6): 417–426

    PubMed  CAS  Google Scholar 

  24. Bradley WG Jr, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M (1991) Association of deep white matter infarction with chronic communicating hydrocephalus: implications regarding the possible origin of normal-pressure hydrocephalus. AJNR Am J Neuroradiol 12(1):31–39

    PubMed  Google Scholar 

  25. Jellinger K (1976) Neuropathological aspects of dementias resulting from abnormal blood and cerebrospinal fluid dynamics. Acta Neurol Belg 76(2):83–102

    PubMed  CAS  Google Scholar 

  26. Klinge PM, Berding G, Brinker T, Knapp WH, Samii M (1999) A positron emission tomography study of cerebrovascular reserve before and after shunt surgery in patients with idiopathic chronic hydrocephalus. J Neurosurg 91(4):605–609

    PubMed  CAS  Google Scholar 

  27. Klinge P, Berding G, Brinker T, Schuhmann M, Knapp WH, Samii M (2002) PET-studies in idiopathic chronic hydrocephalus before and after shunt-treatment: the role of risk factors for cerebrovascular disease (CVD) on cerebral hemodynamics. Acta Neurochir Suppl 81:43–45

    PubMed  CAS  Google Scholar 

  28. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S17–S28

    PubMed  Google Scholar 

  29. Gjerris F, Borgesen SE, Sorensen PS, Boesen F, Schmidt K, Harmsen A, et al (1987) Resistance to cerebrospinal fluid outflow and intracranial pressure in patients with hydrocephalus after subarachnoid haemorrhage. Acta Neurochir (Wien) 88(3–4):79–86

    CAS  Google Scholar 

  30. Bech-Azeddine R, Hogh P, Juhler M, Gjerris F, Waldemar G (2007) Idiopathic normal-­pressure hydrocephalus: clinical comorbidity correlated with cerebral biopsy findings and outcome of cerebrospinal fluid shunting. J Neurol Neurosurg Psychiatry 78(2):157–161

    PubMed  CAS  Google Scholar 

  31. Savolainen S, Paljarvi L, Vapalahti M (1999) Prevalence of Alzheimer’s disease in patients investigated for presumed normal pressure hydrocephalus: a clinical and neuropathological study. Acta Neurochir (Wien) 141(8):849–853

    CAS  Google Scholar 

  32. Klinge PM, Brooks DJ, Samii A, Weckesser E, van den HJ, Fricke H, et al (2008) Correlates of local cerebral blood flow (CBF) in normal pressure hydrocephalus patients before and after shunting – A retrospective analysis of [(15)O]H(2)O PET-CBF studies in 65 patients. Clin Neurol Neurosurg 110(4): 369–375

    PubMed  Google Scholar 

  33. Owler BK, Momjian S, Czosnyka Z, Czosnyka M, Pena A, Harris NG, et al (2004) Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metabol 24(1):17–23

    Google Scholar 

  34. Kondziella D, Sonnewald U, Tullberg M, Wikkelso C (2008) Brain metabolism in adult chronic hydrocephalus. J Neurochem 106(4):1515–1524

    PubMed  CAS  Google Scholar 

  35. Agren-Wilsson A, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2005) Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 76(8):1088–1093

    PubMed  CAS  Google Scholar 

  36. Lenfeldt N, Hauksson J, Birgander R, Eklund A, Malm J (2008) Improvement after cerebrospinal fluid drainage is related to levels of N-acetyl-aspartate in idiopathic normal pressure hydrocephalus. Neurosurgery 62(1):135–141, discussion

    PubMed  Google Scholar 

  37. Malm J, Kristensen B, Ekstedt J, Adolfsson R, Wester P (1991) CSF monoamine metabolites, cholinesterases and lactate in the adult hydrocephalus syndrome (normal pressure hydrocephalus) related to CSF hydrodynamic parameters. J Neurol Neurosurg Psychiatry 54(3):252–259

    PubMed  CAS  Google Scholar 

  38. Braun KP, Vandertop WP, Gooskens RH, Tulleken KA, Nicolay K (2000) NMR spectroscopic evaluation of cerebral metabolism in hydrocephalus: a review. Neurol Res 22(1):51–64

    PubMed  CAS  Google Scholar 

  39. Tullberg M, Hellstrom P, Piechnik SK, Starmark JE, Wikkelso C (2004) Impaired wakefulness is associated with reduced anterior cingulate CBF in patients with normal pressure hydrocephalus. Acta Neurol Scand 110(5):322–330

    PubMed  CAS  Google Scholar 

  40. Tullberg M, Mansson JE, Fredman P, Lekman A, Blennow K, Ekman R, et al (2000) CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry 69(1):74–81

    PubMed  CAS  Google Scholar 

  41. Tullberg M, Blennow K, Mansson JE, Fredman P, Tisell M, Wikkelso C (2008) Cerebrospinal fluid markers before and after shunting in patients with secondary and idiopathic normal pressure hydrocephalus. Cerebrospinal Fluid Res 5:9

    PubMed  Google Scholar 

  42. Czosnyka ZH, Czosnyka M, Whitfield PC, Donovan T, Pickard JD (2002) Cerebral autoregulation among patients with symptoms of hydrocephalus. Neurosurgery 50(3):526–532

    PubMed  Google Scholar 

  43. Lenfeldt N, Larsson A, Nyberg L, Andersson M, Birgander R, Eklund A, et al (2008) Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain 131:2904–2912

    PubMed  Google Scholar 

  44. Agren-Wilsson A, Roslin M, Eklund A, Koskinen LO, Bergenheim AT, Malm J (2003) Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus ­syndrome. J Neurol Neurosurg Psychiatry 74(2):217–221

    PubMed  CAS  Google Scholar 

  45. Krauss JK, Regel JP, Vach W, Orszagh M, Jungling FD, Bohus M, et al (1997) White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery 40(3):491–495

    PubMed  CAS  Google Scholar 

  46. Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2(8):506–511

    PubMed  Google Scholar 

  47. Silverberg GD (2004) Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both. Brain 127(Pt 5):947–948

    PubMed  Google Scholar 

  48. Bech RA, Waldemar G, Gjerris F, Klinken L, Juhler M (1999) Shunting effects in patients with idiopathic normal pressure hydrocephalus; correlation with cerebral and leptomeningeal biopsy findings. Acta Neurochir (Wien) 141(6):633–639

    CAS  Google Scholar 

  49. Bech RA, Juhler M, Waldemar G, Klinken L, Gjerris F (1997) Frontal brain and leptomeningeal biopsy specimens correlated with cerebrospinal fluid outflow resistance and B-wave activity in patients suspected of normal-pressure hydrocephalus. Neurosurgery 40(3):497–502

    PubMed  CAS  Google Scholar 

  50. Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, et al (2000) Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry 68(6):778–781

    PubMed  CAS  Google Scholar 

  51. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153(3):725–733

    PubMed  CAS  Google Scholar 

  52. Agren-Wilsson A, Lekman A, Sjoberg W, Rosengren L, Blennow K, Bergenheim AT, et al (2007) CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 116(5):333–339

    PubMed  CAS  Google Scholar 

  53. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C (1998) CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology 50(4):1122–1127

    PubMed  CAS  Google Scholar 

  54. Tarnaris A, Watkins LD, Kitchen ND (2006) Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res 3:11

    PubMed  Google Scholar 

  55. Tullberg M, Blennow K, Mansson JE, Fredman P, Tisell M, Wikkelso C (2007) Ventricular cerebrospinal fluid neurofilament protein levels decrease in parallel with white matter pathology after shunt surgery in ­normal pressure hydrocephalus. Eur J Neurol 14(3):248–254

    PubMed  CAS  Google Scholar 

  56. Kondziella D, Ludemann W, Brinker T, Sletvold O, Sonnewald U (2002) Alterations in brain metabolism, CNS morphology and CSF dynamics in adult rats with kaolin-induced hydrocephalus. Brain Res 927(1):35–41

    PubMed  CAS  Google Scholar 

  57. Richards HK, Bucknall RM, Jones HC, Pickard JD (1995) Uncoupling of LCBF and LCGU in two different models of hydrocephalus: a review. Childs Nerv Syst 11(5):288–292

    PubMed  CAS  Google Scholar 

  58. da Silva MC, Michowicz S, Drake JM, Chumas PD, Tuor UI (1995) Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. J Cereb Blood Flow Metab 15(6):1057–1065

    PubMed  CAS  Google Scholar 

  59. Klinge P, Samii A, Mühlendyck A, Visnyei K, Meyer GJ, Walter GF, et al (2003) Cerebral hypoperfusion and delayed hippocampal response after induction of adult kaolin hydrocephalus. Stroke 34(1):193–199

    PubMed  Google Scholar 

  60. Luciano MG, Skarupa DJ, Booth AM, Wood AS, Brant CL, Gdowski MJ (2001) Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metab 21(3):285–294

    PubMed  CAS  Google Scholar 

  61. Tashiro Y, Chakrabortty S, Drake JM, Hattori T (1997) Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus. J Neurosurg 86(2):263–271

    PubMed  CAS  Google Scholar 

  62. Tashiro Y, Drake JM, Chakrabortty S, Hattori T (1997) Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus. Brain Res 770(1–2):45–52

    PubMed  CAS  Google Scholar 

  63. Tashiro Y, Drake JM (1998) Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus. J Neurosurg 88(4):709–717

    PubMed  CAS  Google Scholar 

  64. Jones HC, Chen GF, Yehia BR, Carter BJ, Akins EJ, Wolpin LC (2005) Single and multiple congenic strains for hydrocephalus in the H-Tx rat. Mamm Genome 16(4):251–261

    PubMed  Google Scholar 

  65. Crews L, Wyss-Coray T, Masliah E (2004) Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Brain Pathol 14(3):312–316

    PubMed  CAS  Google Scholar 

  66. Johanson C, Del Bigio M, Kinsman S, Miyan J, Pattisapu J, Robinson M, et al (2001) New models for analysing hydrocephalus and ­disorders of CSF volume transmission. Br J Neurosurg 15(3):281–283

    PubMed  CAS  Google Scholar 

  67. Jones HC, Yehia B, Chen GF, Carter BJ (2004) Genetic analysis of inherited hydrocephalus in a rat model. Exp Neurol 190(1):79–90

    PubMed  CAS  Google Scholar 

  68. Jones HC (1985) Cerebrospinal fluid pressure and resistance to absorption during development in normal and hydrocephalic mutant mice. Exp Neurol 90(1):162–172

    PubMed  CAS  Google Scholar 

  69. Bucknall RM, Jones HC (1990) Electro­corticogram and sensory evoked ­potentials in the young hydrocephalic H-Tx rat. Z Kinderchir 45(Suppl 1):8–10

    PubMed  Google Scholar 

  70. Oi S, Yamada H, Sato O, Matsumoto S (1996) Experimental models of congenital hydrocephalus and comparable clinical problems in the fetal and neonatal periods. Childs Nerv Syst 12(6):292–302

    PubMed  CAS  Google Scholar 

  71. Jones HC, Totten CF, Mayorga DA, Yue M, Carter BJ (2005) Genetic loci for ventricular dilatation in the LEW/Jms rat with fetal-onset hydrocephalus are influenced by gender and genetic background. Cerebrospinal Fluid Res 2:2

    PubMed  Google Scholar 

  72. Okuyama T, Hashi K, Sasaki S, Sudoh K (1985) Brain tissue damage in congenital hydrocephalus of the inbred rat, LEW/Jms – intracerebral cavity formation. No To Shinkei 37(11):1053–1057

    PubMed  CAS  Google Scholar 

  73. McLone DG, Bondareff W, Raimondi AJ (1971) Brain edema in the hydrocephalic hy-3 mouse: submicroscopic morphology. J Neuropathol Exp Neurol 30(4):627–637

    PubMed  CAS  Google Scholar 

  74. Oi S, Shimoda M, Shibata M, Honda Y, Togo K, Shinoda M, et al (2000) Pathophysiology of long-standing overt ventriculomegaly in adults. J Neurosurg 92(6): 933–940

    PubMed  CAS  Google Scholar 

  75. Weller RO, Mitchell J (1980) Cerebrospinal fluid edema and its sequelae in hydrocephalus. Adv Neurol 28:111–123

    PubMed  CAS  Google Scholar 

  76. Wilson RK, Williams MA (2007) Evidence that congenital hydrocephalus is a precursor to idiopathic normal pressure hydrocephalus (INPH) in only a subset of patients. J Neurol Neurosurg Psychiatry 78:508–511

    PubMed  Google Scholar 

  77. Zhang J, Williams MA, Rigamonti D (2006) Genetics of human hydrocephalus. J Neurol 253(10):1255–1266

    PubMed  CAS  Google Scholar 

  78. Johnson MJ, Ayzman I, Wood AS, Tkach JA, Klauschie J, Skarupa DJ, et al (1999) Development and characterization of an adult model of obstructive hydrocephalus. J Neurosci Methods 91(1–2):55–65

    PubMed  CAS  Google Scholar 

  79. McAllister JP, Chovan P, Steiner CP, Johnson MJ, Ayzman I, Wood AS, et al (1998) Differential ventricular expansion in hydrocephalus. Eur J Pediatr Surg 8(Suppl 1):39–42

    PubMed  Google Scholar 

  80. Del Bigio MR, Crook CR, Buist R (1997) Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Exp Neurol 148(1):256–264

    PubMed  CAS  Google Scholar 

  81. McAllister JP, Maugans TA, Shah MV, Truex RC Jr (1985) Neuronal effects of experimentally induced hydrocephalus in newborn rats. J Neurosurg 63(5):776–783

    PubMed  Google Scholar 

  82. Del Bigio MR, Bruni JE (1987) Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediatr Neurosci 13(2):72–77

    PubMed  CAS  Google Scholar 

  83. Sahar A, Hochwald GM, Ransohoff J (1970) Experimental hydrocephalus: cerebrospinal fluid formation and ventricular size as a function of intraventricular pressure. J Neurol Sci 11(1):81–91

    PubMed  CAS  Google Scholar 

  84. Hochwald GM, Lux WE Jr, Sahar A, Ransohoff J (1972) Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26(2):120–129

    PubMed  CAS  Google Scholar 

  85. Hochwald GM, Nakamura S, Camins MB (1981) The rat in experimental obstructive hydrocephalus. Z Kinderchir 34(4):403–410

    PubMed  CAS  Google Scholar 

  86. Weller RO, Wisniewski H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30(4):613–626

    PubMed  CAS  Google Scholar 

  87. Cardoso ER, Del Bigio MR, Schroeder G (1989) Age-dependent changes of cerebral ventricular size. Part I: Review of intracranial fluid collections. Acta Neurochir (Wien) 97(1–2):40–46

    CAS  Google Scholar 

  88. Cardoso ER, Del Bigio MR (1989) Age-related changes of cerebral ventricular size. Part II: Normalization of ventricular size following shunting. Acta Neurochir (Wien) 97(3–4):135–138

    CAS  Google Scholar 

  89. Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2

    PubMed  Google Scholar 

  90. Rekate HL, Nadkarni TD, Wallace D (2008) The importance of the cortical subarachnoid space in understanding hydrocephalus. J Neurosurg Pediatrics 2(1):1–11

    Google Scholar 

  91. Li J, McAllister JP, Shen Y, Wagshul ME, Miller JM, Egnor MR, et al (2008) Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Exp Neurol 211(2):351–361

    PubMed  Google Scholar 

  92. Slobodian I, Krassioukov-Enns D, Del Bigio MR (2007) Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats. Cerebrospinal Fluid Res 4:9

    PubMed  Google Scholar 

  93. Williams MA, McAllister JP, Walker ML, Kranz DA, Bergsneider M, Del Bigio MR, et al (2007) Priorities for hydrocephalus research: report from a National Institutes of Health-sponsored workshop. J Neurosurg 107(5):345–357

    PubMed  Google Scholar 

  94. Brinker T, Beck H, Klinge P, Kischnik B, Oi S, Samii M (1998) Sinusoidal intrathecal infusion for assessment of CSF dynamics in kaolin-induced hydrocephalus. Acta Neurochir (Wien) 140(10):1069–1075

    CAS  Google Scholar 

  95. Klinge P, Muhlendyck A, Lee S, Ludemann W, Groos S, Samii M, et al (2002) Temporal and regional profile of neuronal and glial cellular injury after induction of kaolin hydrocephalus. Acta Neurochir Suppl 81:275–277

    PubMed  CAS  Google Scholar 

  96. Sekhon LH, Morgan MK, Spence I, Weber NC (1994) Chronic cerebral hypoperfusion and impaired neuronal function in rats. Stroke 25(5):1022–1027

    PubMed  CAS  Google Scholar 

  97. Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann NY Acad Sci 924:17–25

    PubMed  CAS  Google Scholar 

  98. Weller RO, Nicoll JA (2003) Cerebral amyloid angiopathy: pathogenesis and effects on the ageing and Alzheimer brain. Neurol Res 25(6):611–616

    PubMed  Google Scholar 

  99. Cummings BJ (1997) Plaques and tangles: searching for primary events in a forest of data. Neurobiol Aging 18(4):358–362

    PubMed  CAS  Google Scholar 

  100. Johanson CE, Duncan JA III, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 5:10

    PubMed  Google Scholar 

  101. Klinge PM, Samii A, Niescken S, Brinker T, Silverberg GD (2006) Brain amyloid accumulates in aged rats with kaolin-induced hydrocephalus. Neuroreport 17(6):657–660

    PubMed  CAS  Google Scholar 

  102. Weller RO, Cohen NR, Nicoll JA (2004) Cerebrovascular disease and the pathophysiology of Alzheimer’s disease. Implications for therapy. Panminerva Med 46(4):239–251

    PubMed  CAS  Google Scholar 

  103. Weller RO, Massey A, Kuo YM, Roher AE (2000) Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer’s disease. Ann NY Acad Sci 903:110–117

    PubMed  CAS  Google Scholar 

  104. de la Torre JC (2004) Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 3(3):184–190

    PubMed  Google Scholar 

  105. Liu K, Solano I, Mann D, Lemere C, Mercken M, Trojanowski JQ, et al (2006) Characterization of Abeta11-40/42 peptide deposition in Alzheimer’s disease and young Down’s syndrome brains: implication of N-terminally truncated Abeta species in the pathogenesis of Alzheimer’s disease. Acta Neuropathol 112(2):163–174

    PubMed  CAS  Google Scholar 

  106. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al (2000) Clearance of Alzheimer’s amyloid-ss(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106(12):1489–1499

    PubMed  CAS  Google Scholar 

  107. Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, et al (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57(10):1763–1766

    PubMed  CAS  Google Scholar 

  108. Silverberg GD, Huhn S, Jaffe RA (2002) Cerebrospinal fluid production is down-­regulated in chronic hydrocephalus. J Neurosurg 97(6):1271–1275

    PubMed  Google Scholar 

  109. Wikkelso C, Blomstrand C (1982) Cerebrospinal fluid proteins and cells in ­normal-pressure hydrocephalus. J Neurol 228(3):171–180

    PubMed  CAS  Google Scholar 

  110. Donahue JE, Flaherty SL, Johanson CE, Duncan JA III, Silverberg GD, Miller MC, et al (2006) RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol 112(4):405–415

    PubMed  CAS  Google Scholar 

  111. Braak H, Braak E (1997) Staging of Alzheimer-related cortical destruction. Int Psychogeriatr 9(Suppl 1):257–261

    PubMed  Google Scholar 

  112. Kimura T, Ono T, Takamatsu J, Yamamoto H, Ikegami K, Kondo A, et al (1996) Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments. Dementia 7(4):177–181

    PubMed  CAS  Google Scholar 

  113. Augustinack JC, Schneider A, Mandelkow EM, Hyman BT (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol (Berl) 103(1):26–35

    CAS  Google Scholar 

  114. Gomez-Ramos P, Moran MA (1998) Ultrastructural aspects of neurofibrillary tangle formation in aging and Alzheimer’s disease. Microsc Res Tech 43(1):49–58

    PubMed  CAS  Google Scholar 

  115. Kudo T, Mima T, Hashimoto R, Nakao K, Morihara T, Tanimukai H, et al (2000) Tau protein is a potential biological marker for normal pressure hydrocephalus. Psychiatry Clin Neurosci 54(2):199–202

    PubMed  CAS  Google Scholar 

  116. Tullberg M, Rosengren L, Blomsterwall E, Karlsson JE, Wikkelso C (1998) CSF neurofilament and glial fibrillary acidic protein in normal pressure hydrocephalus. Neurology 50(4):1122–1127

    PubMed  CAS  Google Scholar 

  117. Lins H, Wichart I, Bancher C, Wallesch CW, Jellinger KA, Rosler N (2004) Immunoreactivities of amyloid beta peptide((1–42)) and total tau protein in lumbar cerebrospinal fluid of patients with normal pressure hydrocephalus. J Neural Transm 111(3):273–280

    PubMed  CAS  Google Scholar 

  118. Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, et al (2004) Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res 1(1):3

    PubMed  Google Scholar 

  119. Klinge PM, Heile A, Slone S, Johanson CE, Miles M, Duncan JA III et al (2008) Evidence of TAU pathology in kaolin-induced hydrocephalus model of the aged rat. Cerebrospinal Fluid Res 4(Suppl I):S 43

    Google Scholar 

  120. Pratico D, Zhukareva V, Yao Y, Uryu K, Funk CD, Lawson JA, et al (2004) 12/15-lipoxygenase is increased in Alzheimer’s disease: possible involvement in brain oxidative stress. Am J Pathol 164(5):1655–1662

    PubMed  CAS  Google Scholar 

  121. Pratico D, Yao Y, Rokach J, Mayo M, Silverberg GG, McGuire D (2004) Reduction of brain lipid peroxidation by CSF drainage in Alzheimer’s disease patients. J Alzheimers Dis 6(4):385–389

    PubMed  CAS  Google Scholar 

  122. Heile A, Knippenberg S, Miller M, Johanson CE, Silverberg GD, Klinge PM (2008) Pathology of AD-related inflammatory and oxidative stress mediators in Kaolin-induced hydrocephalus model of the aged rat. Clin Neurol Neurosurg 110(Suppl 1):S 17

    Google Scholar 

  123. Smith MA, Perry G (1996) Alzheimer disease: protein-protein interaction and oxidative stress. Bol Estud Med Biol 44(1–4):5–10

    PubMed  CAS  Google Scholar 

  124. Larsson A, Wikkelso C, Bilting M, Stephensen H (1991) Clinical parameters in 74 consecutive patients shunt operated for normal pressure hydrocephalus. Acta Neurol Scand 84(6):475–482

    PubMed  CAS  Google Scholar 

  125. Harris NG, McAllister JP, Jones HC (1993) The effect of untreated and shunt-treated hydrocephalus on cortical pyramidal neurone morphology in the H-Tx rat. Eur J Pediatr Surg 3(Suppl 1):31–32

    PubMed  Google Scholar 

  126. Harris NG, Jones HC, Patel S (1994) Ventricle shunting in young H-Tx rats with inherited congenital hydrocephalus: a quantitative histological study of cortical grey matter. Childs Nerv Syst 10(5):293–301

    PubMed  CAS  Google Scholar 

  127. Jones HC, Rivera KM, Harris NG (1995) Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment. Childs Nerv Syst 11(11):655–660

    PubMed  CAS  Google Scholar 

  128. Jones HC, Harris NG, Rocca JR, Andersohn RW (2000) Progressive tissue injury in infantile hydrocephalus and prevention/reversal with shunt treatment. Neurol Res 22(1):89–96

    PubMed  CAS  Google Scholar 

  129. Lovely TJ, Miller DW, McAllister JP (1989) A technique for placing ventriculoperitoneal shunts in a neonatal model of hydrocephalus. J Neurosci Methods 29(3):201–206

    PubMed  CAS  Google Scholar 

  130. McAllister JP, Cohen MI, O’Mara KA, Johnson MH (1991) Progression of experimental infantile hydrocephalus and effects of ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. Neurosurgery 29(3):329–340

    PubMed  Google Scholar 

  131. Eskandari R, McAllister JP, Miller JM, Ding Y, Ham SD, Shearer DM, et al (2004) Effects of hydrocephalus and ventriculoperitoneal shunt therapy on afferent and efferent connections in the feline sensorimotor cortex. J Neurosurg 101(2 Suppl):196–210

    PubMed  Google Scholar 

  132. Miller JM, McAllister JP (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    PubMed  Google Scholar 

  133. Del Bigio MR, Bruni JE (1988) Periventricular pathology in hydrocephalic rabbits before and after shunting. Acta Neuropathol 77(2):186–195

    PubMed  CAS  Google Scholar 

  134. Del Bigio MR, Kanfer JN, Zhang YW (1997) Myelination delay in the cerebral white matter of immature rats with kaolin-induced hydrocephalus is reversible. J Neuropathol Exp Neurol 56(9):1053–1066

    PubMed  CAS  Google Scholar 

  135. Klinge PM, Beck H, Brinker T, Walter GF, Samii M (1999) Induction of heat shock protein 70 in the rat brain following intracisternal infusion of autologous blood: evaluation of acute neuronal damage. J Neurosurg 91(5):843–850

    PubMed  CAS  Google Scholar 

  136. Klinge PM, Gerkmann I, Samii A, Brinker T (2004) Incomplete reversibility of selective hippocampal response after early and delayed shunting in adult kaolin-hydrocephalus – implications for early shunt treatment. Cerebrospinal Fluid Res 1(Suppl 1):S 33

    Google Scholar 

  137. Martinez G, Di Giacomo C, Carnazza ML, Sorrenti V, Castana R, Barcellona ML, et al (1997) MAP2, synaptophysin immunostaining in rat brain and behavioral modifications after cerebral postischemic reperfusion. Dev Neurosci 19(6):457–464

    PubMed  CAS  Google Scholar 

  138. Thomsen AM, Borgesen SE, Bruhn P, Gjerris F (1986) Prognosis of dementia in normal-pressure hydrocephalus after a shunt operation. Ann Neurol 20(3):304–310

    PubMed  CAS  Google Scholar 

  139. Tashiro Y, Chakrabortty S, Drake JM, Hattori T (1997) Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus. J Neurosurg 86(2):263–271

    PubMed  CAS  Google Scholar 

  140. Shinoda M, Olson L (1997) Immunological aspects of kaolin-induced hydrocephalus. Int J Neurosci 92(1–2):9–28

    PubMed  CAS  Google Scholar 

  141. Tsubokawa T, Katayama Y, Kawamata T (1988) Impaired hippocampal plasticity in experimental chronic hydrocephalus. Brain Inj 2(1):19–30

    PubMed  CAS  Google Scholar 

  142. Bergsneider M, Yang I, Hu X, McArthur DL, Cook SW, Boscardin WJ (2004) Relationship between valve opening pressure, body position, and intracranial pressure in normal pressure hydrocephalus: paradigm for selection of programmable valve pressure setting. Neurosurgery 55(4):851–858

    PubMed  Google Scholar 

  143. Silverberg GD, Levinthal E, Sullivan EV (2002) Assessment of low-flow CSF drainage as a treatment for AD: Results of a randomized pilot study. Neurology (in press)

    Google Scholar 

  144. Silverberg GD, Mayo M, Saul T, Fellmann J, Carvalho J, McGuire D (2008) Continuous CSF drainage in AD: results of a double-blind, randomized, placebo-controlled study. Neurology 71(3):202–209

    PubMed  CAS  Google Scholar 

  145. Perry T, Greig NH (2002) The glucagon-like peptides: a new genre in therapeutic targets for intervention in Alzheimer’s disease. J Alzheimers Dis 4(6):487–496

    PubMed  CAS  Google Scholar 

  146. Perry T, Lahiri DK, Sambamurti K, Chen D, Mattson MP, Egan JM, et al (2003) Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res 72(5):603–612

    PubMed  CAS  Google Scholar 

  147. Heile A, Knippenberg S, Wallrap C, Klinge PM, Brinker T (2008) Ex vivo gene therapy of hydrocephalus: Intrathecal implantation of mesenchymal stem cells producing the neuroprotective peptide Glucagon like peptide-1. Clin Neurol Neurosurg 110(Suppl 1): S 30–S 31

    Google Scholar 

  148. Abstracts of the Congress “Hydrocephalus 2008” 17–20 September 2008, Hannover, Germany (2008). Clin Neurol Neurosurg 110(Suppl 1):1–46

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Klinge, P.M. (2011). Animals Models of Normal Pressure Hydrocephalus. In: De Deyn, P., Van Dam, D. (eds) Animal Models of Dementia. Neuromethods, vol 48. Humana Press. https://doi.org/10.1007/978-1-60761-898-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-898-0_31

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-897-3

  • Online ISBN: 978-1-60761-898-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics