Skip to main content

The Concept of Multiple-Target Anti-miRNA Antisense Oligonucleotide Technology

  • Protocol
  • First Online:
MicroRNA and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 676))

Abstract

The multiple-target AMO technology or MT-AMO technology is an innovative strategy, which confers on a single AMO fragment the capability of targeting multiple miRNAs. This modified AMO is single-stranded 2′-O-methyl-modified oligoribonucleotides carrying multiple AMO units, which are engineered into a single unit and are able to simultaneously silence multiple-target miRNAs or multiple miRNA seed families. Studies suggest that the MT-AMO is an improved approach for miRNA target finding and miRNA function validation; it not only enhances the effectiveness of targeting miRNAs but also confers diversity of actions. It has been successfully used to identify target genes and cellular function of several oncogenic miRNAs and of the muscle-specific miRNAs (Lu et al., Nucleic Acids Res 37:e24–e33, 2009). This novel strategy may find its broad application as a useful tool in miRNA research for exploring biological processes involving multiple miRNAs and multiple genes, and the potential as an miRNA therapy for human disease such as cancer and cardiac disorders. This technology was developed by my research laboratory in collaboration with Yang’s group (Lu et al., Nucleic Acids Res 37:e24–e33, 2009), and it is similar but distinct from the miRNA Sponge technology developed by Sharp’s laboratory in 2007 (Ebert et al., Nat Methods 4:721–726, 2007) and modified by Gentner et al. (Nat Methods 6:63–66, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689.

    Article  PubMed  Google Scholar 

  2. Hammond SM (2006) MicroRNA therapeutics: a new niche for antisense nucleic acids. TiMM 12:99–101.

    CAS  Google Scholar 

  3. Cheng AM, Byrom MW, Shelton J, Ford LP, Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297.

    Article  PubMed  CAS  Google Scholar 

  4. Stenvang J, Kauppinen S (2008) MicroRNAs as targets for antisense-based therapeutics. Expert Opin Biol Ther 8:59–81.

    Article  PubMed  CAS  Google Scholar 

  5. Eckstein F (2007) The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther 7:1021–1034.

    Article  PubMed  CAS  Google Scholar 

  6. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, Doevendans PA, Mummery CL, Borlak J, Haverich A, Gross C, Engelhardt S, Ertl G, Bauersachs J (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267.

    Article  PubMed  CAS  Google Scholar 

  7. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103: 18255–18260.

    Article  PubMed  Google Scholar 

  8. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100:416–424.

    Article  PubMed  CAS  Google Scholar 

  9. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618.

    Article  PubMed  Google Scholar 

  10. Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart. Do they play a role in cardiac hypertrophy? Am J Pathol 170:1831–1840.

    Article  PubMed  CAS  Google Scholar 

  11. Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM, Wang DZ (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42:1137–1141.

    Article  PubMed  CAS  Google Scholar 

  12. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261.

    Article  PubMed  CAS  Google Scholar 

  13. Krek A, Grun D, Poy M, Wolf R, Rosenberg L, Epstein E, MacMenamin P, da Piedade I, Gunsalus K, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500.

    Article  PubMed  CAS  Google Scholar 

  14. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307.

    Article  PubMed  CAS  Google Scholar 

  15. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726.

    Article  PubMed  CAS  Google Scholar 

  16. Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400.

    Article  PubMed  CAS  Google Scholar 

  17. Vermeulen A, Robertson B, Dalby AB, Marshall WS, Karpilow J, Leake D, Khvorova A, Baskerville S (2007) Double-stranded regions are essential design components of potent inhibitors of RISC function. RNA 13:723–730.

    Article  PubMed  CAS  Google Scholar 

  18. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922.

    Article  PubMed  CAS  Google Scholar 

  19. Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, Yang B (2009) Complex antisense inhibitors offer a superior approach for microRNA research and therapy. Nucleic Acids Res 37:e24–e33.

    Article  PubMed  Google Scholar 

  20. Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, Yang B, Wang H, Wang Z (2006) A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol 70:1621–1629.

    Article  PubMed  CAS  Google Scholar 

  21. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    Article  PubMed  CAS  Google Scholar 

  22. Henkel J (1999) Attacking AIDS with a ‘cocktail’ therapy? FDA Consum 33:12–17.

    Google Scholar 

  23. Konlee M (1998) An evaluation of drug cocktail combinations for their immunological value in preventing/remitting opportunistic infections. Posit Health News 16:2–4.

    Google Scholar 

  24. Charpentier G (2002) Oral combination therapy for type 2 diabetes. Diabetes Metab Res Rev 18(Suppl 3):S70–S76.

    Article  PubMed  CAS  Google Scholar 

  25. Ogihara T (2003) The combination therapy of hypertension to prevent cardiovascular events (COPE) trial: rationale and design. Hypertens Res 28:331–338.

    Article  Google Scholar 

  26. Kumar P (2005) Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab Investig 85:756–767.

    Article  PubMed  CAS  Google Scholar 

  27. Nabholtz JM, Gligorov J (2005) Docetaxel/trastuzumab combination therapy for the treatment of breast cancer. Expert Opin Pharmacother 6:1555–1564.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Canadian Institute of Health Research, Heart and Stroke Foundation of Quebec and Fonds de la Recherche de l’Institut de Cardiologie de Montreal. Dr. Z. Wang is a Changjiang Scholar Professor of the Ministry of Education of China and a Longjiang Scholar Professor of Heilongjiang, China. The authors thank XiaoFan Yang for her excellent technical supports.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, Z. (2011). The Concept of Multiple-Target Anti-miRNA Antisense Oligonucleotide Technology. In: Wu, W. (eds) MicroRNA and Cancer. Methods in Molecular Biology, vol 676. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-863-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-863-8_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-862-1

  • Online ISBN: 978-1-60761-863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics