Skip to main content

Assessing Sequence-Specific DNA Binding and Transcriptional Activity of STAT1 Transcription Factor

  • Protocol
  • First Online:
Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 647))

Abstract

Continuous nucleocytoplasmic shuttling of signal transducer and activator of transcription (STAT) proteins is a key to understand their function as cytokine-responsive transcription factors. STATs enter the nucleus both by carrier-dependent and carrier-independent transport pathways, and it was previously shown that STAT1 exits the nucleus only after its prior enzymatic dephosphorylation by nuclear phosphatases. The identification of different transport pathways for unphosphorylated and tyrosine-phosphorylated STAT dimers was made possible by a combination of a diverse set of experimental approaches in the field of molecular biology. In the following, we will summarize some of the techniques that have been successfully used to decipher molecular mechanisms engaged in STAT1 dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635

    Article  PubMed  CAS  Google Scholar 

  2. Brivanlou AH, Darnell JE Jr (2002) Signal transduction and the control of gene expression. Science 295:813–818

    Article  PubMed  CAS  Google Scholar 

  3. Sehgal PB (2008) Paradigm shifts in the cell biology of STAT signaling. Semin Cell Dev Biol 19:329–340

    Article  PubMed  CAS  Google Scholar 

  4. Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82:241–250

    Article  PubMed  CAS  Google Scholar 

  5. Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M, Vinkemeier U (2004) Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1. J Cell Biol 165:823–833

    Article  PubMed  CAS  Google Scholar 

  6. Mertens C, Zhong M, Krishnaraj R, Zou W, Chen X, Darnell JE Jr (2006) Dephosphorylation of phosphotyrosine on STAT1 dimers requires extensive spatial reorientation of the monomers facilitated by the N-terminal domain. Genes Dev 20:3372–3381

    Article  PubMed  CAS  Google Scholar 

  7. Zhong M, Henriksen MA, Takeuchi K, Schaefer O, Liu B, ten Hoeve J, Ren Z, Mao X, Chen X, Shuai K, Darnell JE Jr (2005) Implications of an antiparallel dimeric structure of nonphosphorylated STAT1 for the activation-inactivation cycle. Proc Natl Acad Sci USA 102:3966–3971

    Article  PubMed  CAS  Google Scholar 

  8. Decker T, Kovarik P, Meinke A (1997) GAS elements: a few nucleotides with a major impact on cytokine-induced gene expression. J Interferon Cytokine Res 17:121–134

    Article  PubMed  CAS  Google Scholar 

  9. Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, Bucher P (2001) DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem 276:6675–6688

    Article  PubMed  CAS  Google Scholar 

  10. Fagerlund R, Melen K, Kinnunen L, Julkunen I (2002) Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem 277:30072–30078

    Article  PubMed  CAS  Google Scholar 

  11. McBride KM, Banninger G, McDonald C, Reich NC (2002) Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. EMBO J 21:1754–1763

    Article  PubMed  CAS  Google Scholar 

  12. Haspel RL, Darnell JE Jr (1999) A nuclear protein tyrosine phosphatase is required for the inactivation of Stat1. Proc Natl Acad Sci USA 96:10188–10193

    Article  Google Scholar 

  13. Haspel RL, Salditt-Georgieff M, Darnell JE Jr (1996) The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J 15:6262–6268

    PubMed  CAS  Google Scholar 

  14. Ibarra-Sanchez MJ, Simoncic PD, Nestel FR, Duplay P, Lapp WS, Tremblay ML (2000) The T-cell protein tyrosine phosphatase. Semin Immunol 12:379–386

    Article  PubMed  CAS  Google Scholar 

  15. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K (2002) Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 22:5662–5668

    Article  PubMed  Google Scholar 

  16. Meyer T, Hendry L, Begitt A, John S, Vinkemeier U (2004) A single residue modulates tyrosine dephosphorylation, oligomerization, and nuclear accumulation of Stat transcription factors. J Biol Chem 279:18998–19007

    Article  PubMed  CAS  Google Scholar 

  17. Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U (2003) DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 17:1992–2005

    Article  PubMed  CAS  Google Scholar 

  18. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93:827–839

    Article  Google Scholar 

  19. Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol 3:211–217

    Article  Google Scholar 

  20. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662

    Article  PubMed  CAS  Google Scholar 

  21. Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE Jr (1994) Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76:821–828

    Article  PubMed  CAS  Google Scholar 

  22. Vinkemeier U, Cohen SL, Moarefi I, Chait BT, Kuriyan J, Darnell JE Jr (1996) DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J 15:5616–5626

    PubMed  CAS  Google Scholar 

  23. Xu X, Sun YL, Hoey T (1996) Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273:794–797

    Article  PubMed  CAS  Google Scholar 

  24. Horvath CM, Stark GR, Kerr IM, Darnell JE Jr (1996) Interactions between STAT and non-STAT proteins in the interferon-stimulated gene factor 3 transcription complex. Mol Cell Biol 16:6957–6964

    PubMed  CAS  Google Scholar 

  25. Horvath CM, Wen Z, Darnell JE Jr (1995) A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9:984–994

    Article  PubMed  CAS  Google Scholar 

  26. Marg A, Meyer T, Vigneron M, Vinkemeier U (2008) Microinjected antibodies interfere with protein nucleocytoplasmic shuttling by distinct molecular mechanisms. Cytometry 73A:1128–1144

    Article  PubMed  CAS  Google Scholar 

  27. Yang E, Henriksen MA, Schaefer O, Zakharova N, Darnell JE Jr (2002) Dissociation time from DNA determines transcriptional function in a STAT1 linker mutant. J Biol Chem 277:13455–13462

    Article  PubMed  CAS  Google Scholar 

  28. Shuai K, Stark GR, Kerr IM, Darnell JE Jr (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261:1744–1746

    Article  PubMed  CAS  Google Scholar 

  29. Hendry L, John S (2004) Regulation of STAT signaling by proteolytic processing. Eur J Biochem 271:4613–4620

    Article  PubMed  CAS  Google Scholar 

  30. Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421

    Article  PubMed  CAS  Google Scholar 

  31. Greenlund AC, Morales MO, Viviano BL, Yan H, Krolewski J, Schreiber RD (1995) Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 2:677–687

    Article  PubMed  CAS  Google Scholar 

  32. Durbin JE, Hackenmiller R, Simon MC, Levy DE (1996) Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84:443–450

    Article  PubMed  CAS  Google Scholar 

  33. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84:431–442

    Article  PubMed  CAS  Google Scholar 

  34. Meyer T, Begitt A, Vinkemeier U (2007) Green fluorescent protein-tagging reduces the nucleocytoplasmic shuttling specifically of unphosphorylated STAT1. FEBS J 274:815–826

    Article  PubMed  CAS  Google Scholar 

  35. Müller M, Laxton C, Briscoe J, Schindler C, Improta T, Darnell JE Jr, Stark GR, Kerr IM (1993) Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways. EMBO J 12:4221–4228

    PubMed  Google Scholar 

  36. Begitt A, Meyer T, van Rossum M, Vinkemeier U (2000) Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proc Natl Acad Sci USA 97:10418–10423

    Article  PubMed  CAS  Google Scholar 

  37. Shuai K, Schindler C, Prezioso VR, Darnell JE Jr (1992) Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science 258:1808–1812

    Article  PubMed  CAS  Google Scholar 

  38. Gordon JA (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Meth­ods Enzymol 201:477–482

    Article  PubMed  CAS  Google Scholar 

  39. Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547

    Article  PubMed  CAS  Google Scholar 

  40. Meissner T, Krause E, Vinkemeier U (2004) Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett 576:27–30

    Article  PubMed  CAS  Google Scholar 

  41. Köster M, Hauser H (1999) Dynamic redistribution of STAT1 protein in IFN signaling visualized by GFP fusion proteins. Eur J Biochem 260:137–144

    Article  PubMed  Google Scholar 

  42. Lillemeier BF, Köster M, Kerr IM (2001) STAT1 from the cell membrane to the DNA. EMBO J 20:2508–2517

    Article  PubMed  CAS  Google Scholar 

  43. Köster M, Frahm T, Hauser H (2005) Nucleocytoplasmic shuttling revealed by FRAP and FLIP technologies. Curr Opin Biotechnol 16:28–34

    Article  PubMed  Google Scholar 

  44. Lödige I, Marg A, Wiesner B, Malecová B, Oelgeschläger T, Vinkemeier U (2005) Nuclear export determines the cytokine sensitivity of STAT transcription factors. J Biol Chem 280:43087–43099

    Article  PubMed  Google Scholar 

  45. Meyer T, Begitt A, Lödige I, van Rossum M, Vinkemeier U (2002) Constitutive and IFN-γ-induced nuclear import of STAT1 proceed through independent pathways. EMBO J 21:344–354

    Article  PubMed  CAS  Google Scholar 

  46. Bromberg J, Chen X (2001) STAT proteins: signal transducers and activators of transcription. Methods Enzymol 333:138–151

    Article  PubMed  CAS  Google Scholar 

  47. Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111:807–816

    Article  PubMed  CAS  Google Scholar 

  48. Finlay DR, Newmeyer DD, Price TM, Forbes DJ (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104:189–200

    Article  PubMed  CAS  Google Scholar 

  49. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurements by analysis of fluorescence photobleaching recovery kinetics. Biophy J 16:1055–1069

    Article  CAS  Google Scholar 

  50. Herrmann A, Vogt M, Mönnigmann M, Clahsen T, Sommer U, Haan S, Poli V, Heinrich PC, Müller-Newen G (2007) Nucleocytoplasmic shuttling of persistently activated STAT3. J Cell Sci 120:3249–3261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Petra Lemke, Leibniz-Forschungsinstitut fĂĽr Molekulare Pharmacology, Berlin, for providing us with Fig. 10. Financial support was provided by the Leibniz-Institut fĂĽr Molekulare Pharmakologie, and grants VI 218/4 and ME 1648/2-1 from Deutsche Forschungsgemeinschaft to U.V. and T.M., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Vinkemeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meyer, T., Vinkemeier, U. (2010). Assessing Sequence-Specific DNA Binding and Transcriptional Activity of STAT1 Transcription Factor. In: Higgins, P. (eds) Transcription Factors. Methods in Molecular Biology, vol 647. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-738-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-738-9_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-737-2

  • Online ISBN: 978-1-60761-738-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics