Skip to main content

Histopathologic Assessment of Myocardial Regeneration

  • Protocol
  • First Online:
Stem Cells for Myocardial Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 660))

Abstract

Cardiac regeneration in the form of cell-based therapy offers hope of becoming the breakthrough technology that transforms the state of cardiac medicine. Before attempting to develop the techniques to assess the effectiveness of myocardial regeneration in humans, researchers must have at least a basic understanding of the human heart in its embryonic, normal, and diseased states. To this end, we provide an overview of the histology of the heart, including the current theories on normal embryogenesis and the histology of normal and ischemic myocardium as visualized by pathologists. Knowledge of the cellular constituents, including the controversial existence of resident cardiac stem and/or progenitor cells, and their actions and interactions in the normal state and under the conditions of myocardial ischemia is also crucial before embarking on the quest for cardiac regeneration. Despite widespread optimism in the success of cell-based therapy, inherent difficulties remain in the identification of effective cell populations proposed for cell-based therapy in the human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thom, T., Haase, N., Rosamond, W., Howard, V. J., Rumsfeld, J., Manolio, T., Zheng, Z. J., Flegal, K., O’Donnell, C., Kittner, S., Lloyd-Jones, D., Goff, D. C., Jr., Hong, Y., Adams, R., Friday, G., Furie, K., Gorelick, P., Kissela, B., Marler, J., Meigs, J., Roger, V., Sidney, S., Sorlie, P., Steinberger, J., Wasserthiel-Smoller, S., Wilson, M., and Wolf, P. (2006) Heart disease and stroke statistics – 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Circulation 113, e85–e151.

    Article  PubMed  Google Scholar 

  2. Hunt, S. A., Baker, D. W., Chin, M. H., Cinquegrani, M. P., Feldman, A. M., Francis, G. S., Ganiats, T. G., Goldstein, S., Gregoratos, G., Jessup, M. L., Noble, R. J., Packer, M., Silver, M. A., Stevenson, L. W., Gibbons, R. J., Antman, E. M., Alpert, J. S., Faxon, D. P., Fuster, V., Jacobs, A. K., Hiratzka, L. F., Russell, R. O., and Smith, S. C. Jr. (2001). ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1995 Guidelines for the Evaluation and Management of Heart Failure), J Am Coll Cardiol 38, 2101–2113.

    Article  PubMed  CAS  Google Scholar 

  3. Mariani, J., Ou, R., Bailey, M., Rowland, M., Nagley, P., Rosenfeldt, F., and Pepe, S. (2000) Tolerance to ischemia and hypoxia is reduced in aged human myocardium, J Thorac Cardiovasc Surg 120, 660–667.

    Article  PubMed  CAS  Google Scholar 

  4. Juhaszova, M., Rabuel, C., Zorov, D. B., Lakatta, E. G., and Sollott, S. J. (2005) Protection in the aged heart: preventing the heart-break of old age?, Cardiovasc Res 66, 233–244.

    Article  PubMed  CAS  Google Scholar 

  5. Mosterd, A., and Hoes, A. W. (2007) Clinical epidemiology of heart failure, Heart 93, 1137–1146.

    Article  PubMed  Google Scholar 

  6. Sedmera, D. (2005) Form follows function: developmental and physiological view on ventricular myocardial architecture, Eur J Cardiothorac Surg 28, 526–528.

    Article  PubMed  Google Scholar 

  7. Wenink, A. C., and Gittenberger-de Groot, A. C. (1982) Left and right ventricular trabecular patterns. Consequence of ventricular septation and valve development, Br Heart J 48, 462–468.

    Article  PubMed  CAS  Google Scholar 

  8. Sedmera, D., Pexieder, T., Vuillemin, M., Thompson, R. P., and Anderson, R. H. (2000) Developmental patterning of the myocardium, Anat Rec 258, 319–337.

    Article  PubMed  CAS  Google Scholar 

  9. Chien, K. R., Domian, I. J., and Parker, K. K. (2008) Cardiogenesis and the complex biology of regenerative cardiovascular medicine, Science 322, 1494–1497.

    Article  PubMed  CAS  Google Scholar 

  10. Kelly, R. G., Brown, N. A., and Bucking­ham, M. E. (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm, Dev Cell 1, 435–440.

    Article  PubMed  CAS  Google Scholar 

  11. Buckingham, M., Meilhac, S., and Zaffran, S. (2005) Building the mammalian heart from two sources of myocardial cells, Nat Rev Genet 6, 826–835.

    Article  PubMed  CAS  Google Scholar 

  12. Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L. Z., Cai, C. L., Lu, M. M., Reth, M., Platoshyn, O., Yuan, J. X., Evans, S., and Chien, K. R. (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature 433, 647–653.

    Article  PubMed  CAS  Google Scholar 

  13. Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S., Sun, Y., Evans, S. M., Laugwitz, K. L., and Chien, K. R. (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification, Cell 127, 1151–1165.

    Article  PubMed  CAS  Google Scholar 

  14. Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., and Evans, S. (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart, Dev Cell 5, 877–889.

    Article  PubMed  CAS  Google Scholar 

  15. Rychter, Z., and Ostadal, B. (1971) Fate of “sinusoidal” intertrabecular spaces of the cardiac wall after development of the coronary vascular bed in chick embryo, Folia Morphol (Praha) 19, 31–44.

    CAS  Google Scholar 

  16. Varnava, A. M. (2001) Isolated left ventricular non-compaction: a distinct cardiomyopathy?, Heart 86, 599–600.

    Article  PubMed  CAS  Google Scholar 

  17. de Jong, F., Opthof, T., Wilde, A. A., Janse, M. J., Charles, R., Lamers, W. H., and Moorman, A. F. (1992) Persisting zones of slow impulse conduction in developing chicken hearts, Circ Res 71, 240–250.

    Article  PubMed  Google Scholar 

  18. Reckova, M., Rosengarten, C., deAlmeida, A., Stanley, C. P., Wessels, A., Gourdie, R. G., Thompson, R. P., and Sedmera, D. (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system, Circ Res 93, 77–85.

    Article  PubMed  CAS  Google Scholar 

  19. Kumar, V., Abbas, A. K., and Fausto, N., (Ed.) (2005) Robbins and Cotran Pathological Basis of Disease, 7th ed., Elsevier Saunders, Philadelphia.

    Google Scholar 

  20. Stoker, M. E., Gerdes, A. M., and May, J. F. (1982) Regional differences in capillary density and myocyte size in the normal human heart, Anat Rec 202, 187–191.

    Article  PubMed  CAS  Google Scholar 

  21. Miura, T., Shizukuda, Y., Ogawa, S., Ishimoto, R., and Iimura, O. (1991) Effects of early and later reperfusion on healing speed of experimental myocardial infarct, Can J Cardiol 7, 146–154.

    PubMed  CAS  Google Scholar 

  22. Burke, A. P., and Virmani, R. (2007) Pathophysiology of acute myocardial infarction, Med Clin North Am 91, 553–572; ix.

    Article  PubMed  Google Scholar 

  23. Virag, J. I., and Murry, C. E. (2003) Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair, Am J Pathol 163, 2433–2440.

    Article  PubMed  Google Scholar 

  24. Sun, Y., Kiani, M. F., Postlethwaite, A. E., and Weber, K. T. (2002) Infarct scar as living tissue, Basic Res Cardiol 97, 343–347.

    Article  PubMed  Google Scholar 

  25. Beltrami, C. A., Finato, N., Rocco, M., Feruglio, G. A., Puricelli, C., Cigola, E., Quaini, F., Sonnenblick, E. H., Olivetti, G., and Anversa, P. (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans, Circulation 89, 151–163.

    Article  PubMed  CAS  Google Scholar 

  26. Virmani, R., Kolodgie, F. D., and Ladich, E. (2006) Mechanistic insights into cardiac stem cell therapy, in A Guide to Cardiac Cell Therapy (Perlin, E., and Willerson, J. T., Eds.) 2 ed., Informa HealthCare, Milton Park, Abingdon, UK.

    Google Scholar 

  27. Jugdutt, B. I. (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough?, Circulation 108, 1395–1403.

    Article  PubMed  Google Scholar 

  28. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell, 3rd ed., Garland Publishing, New York.

    Google Scholar 

  29. Philips, C., and Wenstrup, R. J., (Ed.) (1992) Biosynthetic and Genetic Disorders of Collagen, Saunders, Philadelphia.

    Google Scholar 

  30. van den Borne, S. W., Cleutjens, J. P., Hanemaaijer, R., Creemers, E. E., Smits, J. F., Daemen, M. J., and Blankesteijn, W. M. (2009) Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction, Cardiovasc Pathol 18, 37–43.

    Article  PubMed  Google Scholar 

  31. Ertl, G., and Frantz, S. (2005) Healing after myocardial infarction, Cardiovasc Res 66, 22–32.

    Article  PubMed  CAS  Google Scholar 

  32. Unverferth, D. V., Baker, P. B., Swift, S. E., Chaffee, R., Fetters, J. K., Uretsky, B. F., Thompson, M. E., and Leier, C. V. (1986) Extent of myocardial fibrosis and cellular hypertrophy in dilated cardiomyopathy, Am J Cardiol 57, 816–820.

    Article  PubMed  CAS  Google Scholar 

  33. Schwarz, F., Mall, G., Zebe, H., Blickle, J., Derks, H., Manthey, J., and Kubler, W. (1983) Quantitative morphologic findings of the myocardium in idiopathic dilated cardiomyopathy, Am J Cardiol 51, 501–506.

    Article  PubMed  CAS  Google Scholar 

  34. Roberts, W. C., Siegel, R. J., and McManus, B. M. (1987) Idiopathic dilated cardiomyopathy: analysis of 152 necropsy patients, Am J Cardiol 60, 1340–1355.

    Article  PubMed  CAS  Google Scholar 

  35. Rose, A. G., and Beck, W. (1985) Dilated (congestive) cardiomyopathy: a syndrome of severe cardiac dysfunction with remarkably few morphological features of myocardial damage, Histopathology 9, 367–379.

    Article  PubMed  CAS  Google Scholar 

  36. Gabler, U., Berndt, A., Kosmehl, H., Mandel, U., Zardi, L., Muller, S., Stelzner, A., and Katenkamp, D. (1996) Matrix remodelling in dilated cardiomyopathy entails the occurrence of oncofetal fibronectin molecular variants, Heart 75, 358–362.

    Article  PubMed  CAS  Google Scholar 

  37. Gunja-Smith, Z., Morales, A. R., Romanelli, R., and Woessner, J. F., Jr. (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links, Am J Pathol 148, 1639–1648.

    PubMed  CAS  Google Scholar 

  38. Barile, L., Messina, E., Giacomello, A., and Marbán, E. (2007) Endogenous cardiac stem cells, Prog Cardiovasc Dis 50, 31–48.

    Article  PubMed  CAS  Google Scholar 

  39. Beltrami, A. P., Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A., Beltrami, C. A., and Anversa, P. (2001) Evidence that human cardiac myocytes divide after myocardial infarction, N Engl J Med 344, 1750–1757.

    Article  PubMed  CAS  Google Scholar 

  40. Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., and Anversa, P. (1998) Myocyte proliferation in end-stage cardiac failure in humans, Proc Natl Acad Sci U S A 95, 8801–8805.

    Article  PubMed  CAS  Google Scholar 

  41. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., Kajstura, J., Leri, A., and Anversa, P. (2002) Chimerism of the transplanted heart, N Engl J Med 346, 5–15.

    Article  PubMed  Google Scholar 

  42. Torella, D., Ellison, G. M., Mendez-Ferrer, S., Ibanez, B., and Nadal-Ginard, B. (2006) Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration, Nat Clin Pract Cardiovasc Med 3 Suppl 1, S8–S13.

    Article  PubMed  CAS  Google Scholar 

  43. Urbanek, K., Quaini, F., Tasca, G., Torella, D., Castaldo, C., Nadal-Ginard, B., Leri, A., Kajstura, J., Quaini, E., and Anversa, P. (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy, Proc Natl Acad Sci U S A 100, 10440–10445.

    Article  PubMed  CAS  Google Scholar 

  44. Reinecke, H., Minami, E., Zhu, W. Z., and Laflamme, M. A. (2008) Cardiogenic differentiation and transdifferentiation of progenitor cells, Circ Res 103, 1058–1071.

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  46. Mathur, A., and Martin, J. F. (2004) Stem cells and repair of the heart, Lancet 364, 183–192.

    Article  PubMed  CAS  Google Scholar 

  47. Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., Salio, M., Battaglia, M., Latronico, M. V., Coletta, M., Vivarelli, E., Frati, L., Cossu, G., and Giacomello, A. (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart, Circ Res 95, 911–921.

    Article  PubMed  CAS  Google Scholar 

  48. Srivastava, D., and Olson, E. N. (2000) A genetic blueprint for cardiac development, Nature 407, 221–226.

    Article  PubMed  CAS  Google Scholar 

  49. Hirschmann-Jax, C., Foster, A. E., Wulf, G. G., Nuchtern, J. G., Jax, T. W., Gobel, U., Goodell, M. A., and Brenner, M. K. (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells, Proc Natl Acad Sci U S A 101, 14228–14233.

    Article  PubMed  CAS  Google Scholar 

  50. Hierlihy, A. M., Seale, P., Lobe, C. G., Rudnicki, M. A., and Megeney, L. A. (2002) The post-natal heart contains a myocardial stem cell population, FEBS Lett 530, 239–243.

    Article  PubMed  CAS  Google Scholar 

  51. Martin, C. M., Ferdous, A., Gallardo, T., Humphries, C., Sadek, H., Caprioli, A., Garcia, J. A., Szweda, L. I., Garry, M. G., and Garry, D. J. (2008) Hypoxia-inducible factor-2alpha transactivates Abcg2 and promotes cytoprotection in cardiac side population cells, Circ Res 102, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  52. Mouquet, F., Pfister, O., Jain, M., Oikonomopoulos, A., Ngoy, S., Summer, R., Fine, A., and Liao, R. (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells, Circ Res 97, 1090–1092.

    Article  PubMed  CAS  Google Scholar 

  53. Meissner, K., Heydrich, B., Jedlitschky, G., Meyer Zu Schwabedissen, H., Mosyagin, I., Dazert, P., Eckel, L., Vogelgesang, S., Warzok, R. W., Bohm, M., Lehmann, C., Wendt, M., Cascorbi, I., and Kroemer, H. K. (2006) The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart, J Histochem Cytochem 54, 215–221.

    Article  PubMed  CAS  Google Scholar 

  54. Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello, A., Abraham, M. R., and Marbán, E. (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens, Circulation 115, 896–908.

    Article  PubMed  Google Scholar 

  55. Pouly, J., Bruneval, P., Mandet, C., Proksch, S., Peyrard, S., Amrein, C., Bousseaux, V., Guillemain, R., Deloche, A., Fabiani, J. N., and Menasche, P. (2008) Cardiac stem cells in the real world, J Thorac Cardiovasc Surg 135, 673–678.

    Article  PubMed  Google Scholar 

  56. Yamabi, H., Lu, H., Dai, X., Lu, Y., Hannigan, G., and Coles, J. G. (2006) Overexpression of integrin-linked kinase induces cardiac stem cell expansion, J Thorac Cardiovasc Surg 132, 1272–1279.

    Article  PubMed  CAS  Google Scholar 

  57. Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Garry, D. J., Entman, M. L., and Schneider, M. D. (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction, Proc Natl Acad Sci U S A 100, 12313–12318.

    Article  PubMed  CAS  Google Scholar 

  58. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., Lois, C., Morrison, S. J., and Alvarez-Buylla, A. (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes, Nature 425, 968–973.

    Article  PubMed  CAS  Google Scholar 

  59. Terada, N., Hamazaki, T., Oka, M., Hoki, M., Mastalerz, D. M., Nakano, Y., Meyer, E. M., Morel, L., Petersen, B. E., and Scott, E. W. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion, Nature 416, 542–545.

    Article  PubMed  CAS  Google Scholar 

  60. Ying, Q. L., Nichols, J., Evans, E. P., and Smith, A. G. (2002) Changing potency by spontaneous fusion, Nature 416, 545–548.

    Article  PubMed  CAS  Google Scholar 

  61. Olivetti, G., Capasso, J. M., Sonnenblick, E. H., and Anversa, P. (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats, Circ Res 67, 23–34.

    Article  PubMed  CAS  Google Scholar 

  62. Murry, C. E., Reinecke, H., and Pabon, L. M. (2006) Regeneration gaps: observations on stem cells and cardiac repair, J Am Coll Cardiol 47, 1777–1785.

    Article  PubMed  Google Scholar 

  63. Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska, D., Kasahara, H., Zias, E., Bonafe, M., Nadal-Ginard, B., Torella, D., Nascimbene, A., Quaini, F., Urbanek, K., Leri, A., and Anversa, P. (2005) Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion, Circ Res 96, 127–137.

    Article  PubMed  CAS  Google Scholar 

  64. Laflamme, M. A., and Murry, C. E. (2005) Regenerating the heart, Nat Biotechnol 23, 845–856.

    Article  PubMed  CAS  Google Scholar 

  65. Baschong, W., Suetterlin, R., and Laeng, R. H. (2001) Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM), J Histochem Cytochem 49, 1565–1572.

    Article  PubMed  CAS  Google Scholar 

  66. Driesen, R. B., Dispersyn, G. D., Verheyen, F. K., van den Eijnde, S. M., Hofstra, L., Thone, F., Dijkstra, P., Debie, W., Borgers, M., and Ramaekers, F. C. (2005) Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts, Cardiovasc Res 68, 37–46.

    Article  PubMed  CAS  Google Scholar 

  67. Murasawa, S., Kawamoto, A., Horii, M., Nakamori, S., and Asahara, T. (2005) Niche-dependent translineage commitment of endothelial progenitor cells, not cell fusion in general, into myocardial lineage cells, Arterioscler Thromb Vasc Biol 25, 1388–1394.

    Article  PubMed  CAS  Google Scholar 

  68. Reinecke, H., Minami, E., Poppa, V., and Murry, C. E. (2004) Evidence for fusion between cardiac and skeletal muscle cells, Circ Res 94, e56–e60.

    Article  PubMed  CAS  Google Scholar 

  69. Harris, R. G., Herzog, E. L., Bruscia, E. M., Grove, J. E., Van Arnam, J. S., and Krause, D. S. (2004) Lack of a fusion requirement for development of bone marrow-derived epithelia, Science 305, 90–93.

    Article  PubMed  CAS  Google Scholar 

  70. Wakitani, S., Takaoka, K., Hattori, T., Miyazawa, N., Iwanaga, T., Takeda, S., Watanabe, T. K., and Tanigami, A. (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint, Rheumatology (Oxford) 42, 162–165.

    Article  CAS  Google Scholar 

  71. Swalwell, C. I. (1993) Benign intracardiac teratoma. A case of sudden death, Arch Pathol Lab Med 117, 739–742.

    PubMed  CAS  Google Scholar 

  72. Yoon, Y. S., Park, J. S., Tkebuchava, T., Luedeman, C., and Losordo, D. W. (2004) Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction, Circulation 109, 3154–3157.

    Article  PubMed  Google Scholar 

  73. Pei, X. (1999) Who is hematopoietic stem cell: CD34+ or CD34−? Int J Hematol 70, 213–215.

    PubMed  CAS  Google Scholar 

  74. Zhao, T. C., Tseng, A., Yano, N., et al. (2008) Targeting human CD34+ hematopoietic stem cells with anti-CD45 × anti-myosin light-chain bispecific antibody preserves cardiac function in myocardial infarction. J Appl Physiol 104, 1793–1800.

    Article  PubMed  Google Scholar 

  75. Narasipura, S. D., Wojciechowski, J. C., Duffy, B. M., L Liesveld, J., King, M. R. (2008) Purification of CD45+ hematopoietic cells directly from human bone marrow using a flow-based P-selectin-coated microtube. Am J Hematol 83, 627–629.

    Article  PubMed  Google Scholar 

  76. Ryan, J. M., Barry, F. P., Murphy, J. M., and Mahon, B. P. (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2, 8.

    Article  Google Scholar 

  77. Reyes, M., Li, S., Foraker, J., Kimura, E., Chamberlain, J. S. (2005) Donor origin of multipotent adult progenitor cells in radiation chimeras, Blood 106, 3646–3649.

    Article  PubMed  CAS  Google Scholar 

  78. Ross, J. J., Hong, Z., Willenbring, B., et al. (2006) Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest 116, 3139–3149.

    Article  PubMed  CAS  Google Scholar 

  79. Zhu, Y., Liu, T., Song, K., Fan, X., Ma, X., and Cui, Z. (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26, 664–675.

    Article  PubMed  CAS  Google Scholar 

  80. Zuba-Surma, E. K., Kucia, M., Ratajczak, J., Ratajczak, M. Z. (2009) “Small stem cells” in adult tissues: very small embryonic-like stem cells stand up! Cytometry A 75, 4–13.

    PubMed  Google Scholar 

  81. Wu, K. H., Yang, S. G., Zhou, B., et al. (2007) Human umbilical cord derived stem cells for the injured heart. Med Hypotheses 68, 94–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank D. Kolodgie PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Carter-Monroe, N., Ladich, E., Virmani, R., Kolodgie, F.D. (2010). Histopathologic Assessment of Myocardial Regeneration. In: Lee, R. (eds) Stem Cells for Myocardial Regeneration. Methods in Molecular Biology, vol 660. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-705-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-705-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-704-4

  • Online ISBN: 978-1-60761-705-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics