Skip to main content

Embryonic Stem Cell Biology: Insights from Molecular Imaging

  • Protocol
  • First Online:
Stem Cells for Myocardial Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 660))

Abstract

Embryonic stem (ES) cells have therapeutic potential in disorders of cellular loss such as myocardial infarction, type I diabetes and neurodegenerative disorders. ES cell biology in living subjects was largely poorly understood until incorporation of molecular imaging into the field. Reporter gene imaging works by integrating a reporter gene into ES cells and using a reporter probe to induce a signal detectable by normal imaging modalities. Reporter gene imaging allows for longitudinal tracking of ES cells within the same host for a prolonged period of time. This has advantages over postmortem immunohistochemistry and traditional imaging modalities. The advantages include expression of reporter gene is limited to viable cells, expression is conserved between generations of dividing cells, and expression can be linked to a specific population of cells. These advantages were especially useful in studying a dynamic cell population such as ES cells and proved useful in elucidating the biology of ES cells. Reporter gene imaging identified poor integration of differentiated ES cells transplanted into host tissue as well as delayed donor cell death as reasons for poor long-term survival in vivo. This imaging technology also confirmed that ES cells indeed have immunogenic properties that factor into cell survival and differentiation. Finally, reporter gene imaging improved our understanding of the neoplastic risk of undifferentiated ES cells in forming teratomas. Despite such advances, much remains to be understood about ES cell biology to translate this technology to the bedside, and reporter gene imaging will certainly play a key role in formulating this understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Cao F, et al. (2008) Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS One 3(10): e3474.

    Article  PubMed  Google Scholar 

  2. Schulz TC, et al. (2003) Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 4:27.

    Article  PubMed  Google Scholar 

  3. Jiang J, et al. (2007) Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25(8):1940–1953.

    Article  PubMed  CAS  Google Scholar 

  4. Swijnenburg RJ, van der Bogt KE, Sheikh AY, Cao F, & Wu JC (2007) Clinical hurdles for the transplantation of cardiomyocytes derived from human embryonic stem cells: role of molecular imaging. Curr Opin Biotechnol 18(1):38–45.

    Article  PubMed  CAS  Google Scholar 

  5. Kraitchman DL, et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18):2290–2293.

    Article  PubMed  Google Scholar 

  6. Li Z, et al. (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26(4):864–873.

    Article  PubMed  CAS  Google Scholar 

  7. Hofmann M, et al. (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17):2198–2202.

    Article  PubMed  Google Scholar 

  8. Zhang SJ & Wu JC (2007) Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med 48(12):1916–1919.

    Article  PubMed  CAS  Google Scholar 

  9. Wu JC, et al. (2006) Proteomic analysis of reporter genes for molecular imaging of transplanted embryonic stem cells. Proteomics 6(23):6234–6249.

    Article  PubMed  CAS  Google Scholar 

  10. Wu JC, et al. (2006) Transcriptional profiling of reporter genes used for molecular imaging of embryonic stem cell transplantation. Physiol Genomics 25(1):29–38.

    Article  PubMed  Google Scholar 

  11. Zhou R, Acton PD, & Ferrari VA (2006) Imaging stem cells implanted in infarcted myocardium. J Am Coll Cardiol 48(10):2094–2106.

    Article  PubMed  Google Scholar 

  12. Evans MJ & Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156.

    Article  PubMed  CAS  Google Scholar 

  13. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638.

    Article  PubMed  CAS  Google Scholar 

  14. Thomson JA, et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147.

    Article  PubMed  CAS  Google Scholar 

  15. Li Z, et al. (2007) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116(11 Suppl):I46–I54.

    PubMed  Google Scholar 

  16. Min JY, et al. (2003) Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J Thorac Cardiovasc Surg 125(2):361–369.

    Article  PubMed  Google Scholar 

  17. Robinson AJ, et al. (2005) Survival and engraftment of mouse embryonic stem cell-derived implants in the guinea pig brain. Neurosci Res 53(2):161–168.

    Article  PubMed  CAS  Google Scholar 

  18. Duan Y, et al. (2007) Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 25(12):3058–3068.

    Article  PubMed  CAS  Google Scholar 

  19. van der Bogt KE, et al. (2008) Comparison of different adult stem cell types for treatment of myocardial ischemia. Circulation 118(14 Suppl):S121–S129.

    Article  PubMed  Google Scholar 

  20. Reinecke H & Murry CE (2002) Taking the death toll after cardiomyocyte grafting: a reminder of the importance of quantitative biology. J Mol Cell Cardiol 34(3):251–253.

    Article  PubMed  CAS  Google Scholar 

  21. Li L, et al. (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22(4):448–456.

    Article  PubMed  CAS  Google Scholar 

  22. Drukker M, et al. (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24(2):221–229.

    Article  PubMed  Google Scholar 

  23. Swijnenburg RJ, et al. (2008) In vivo imaging of embryonic stem cells reveals patterns of survival and rejection following transplantation. Stem Cells Dev 17:1023–1029.

    Article  PubMed  CAS  Google Scholar 

  24. Swijnenburg RJ, et al. (2008) Immuno­suppressive therapy mitigates immunological rejection of human embryonic stem cell ­xenografts. Proc Natl Acad Sci U S A 105(35):12991–12996.

    Article  PubMed  CAS  Google Scholar 

  25. Cao F, et al. (2007) Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells Dev 16:1–9.

    Article  Google Scholar 

  26. Cao F, et al. (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9(1):107–117.

    Article  PubMed  CAS  Google Scholar 

  27. Ray P, Tsien R, & Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67(7):3085–3093.

    Article  PubMed  CAS  Google Scholar 

  28. Loening AM & Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2(3):131–137.

    Article  PubMed  Google Scholar 

  29. Wu JC, Inubushi M, Sundaresan G, Schelbert HR, & Gambhir SS (2002) Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106(2):180–183.

    Article  PubMed  Google Scholar 

  30. Cao F, et al. (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7):1005–1014.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Wu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sallam, K., Wu, J.C. (2010). Embryonic Stem Cell Biology: Insights from Molecular Imaging. In: Lee, R. (eds) Stem Cells for Myocardial Regeneration. Methods in Molecular Biology, vol 660. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-705-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-705-1_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-704-4

  • Online ISBN: 978-1-60761-705-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics