Skip to main content

Xenopus laevis Oocytes

  • Protocol
  • First Online:
Membrane Transporters in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 637))

Abstract

Xenopus oocytes are a versatile expression system particularly suited for membrane transporters and channels. Oocytes have little background activity and therefore offer a very high signal-to-noise ratio for transporter and channel characterization. This chapter provides an overview of the basic methods used for the analysis of membrane transporters in this system, including preparation of oocytes, assays of transport activity, protocols for immunostaining and fluorescence microscopy, and other assays to study surface expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stegen, C., Matskevich, I., Wagner, C.A., Paulmichl, M., Lang, F., and Broer, S. (2000) Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim. Biophys. Acta. 1467, 91–100.

    Article  CAS  PubMed  Google Scholar 

  2. Zeuthen, T., Meinild, A.K., Loo, D.D., Wright, E.M., and Klaerke, D.A. (2001) Isotonic transport by the Na+-glucose cotransporter SGLT1 from humans and rabbit. J. Physiol. 531, 631–644.

    Article  CAS  PubMed  Google Scholar 

  3. Weber, W. (1999) Ion currents of Xenopus laevis oocytes: state of the art. Biochim. Biophys. Acta. 1421, 213–233.

    Article  CAS  PubMed  Google Scholar 

  4. Broer, S., Schneider, H.P., Broer, A., Rahman, B., Hamprecht, B., and Deitmer, J.W. (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem. J. 333, 167–174.

    CAS  PubMed  Google Scholar 

  5. Broer, A., Hamprecht, B., and Broer, S. (1998) Discrimination of two amino acid transport activities in 4F2 heavy chain-expressing Xenopus laevis oocytes. Biochem. J. 333, 549–554.

    CAS  PubMed  Google Scholar 

  6. Gurdon, J.B., Lane, C.D., Woodland, H.R., and Marbaix, G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233, 177–182.

    Article  CAS  PubMed  Google Scholar 

  7. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M., et al. (1984) Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307, 604–608.

    Article  CAS  PubMed  Google Scholar 

  8. Barnard, E.A., Miledi, R., and Sumikawa, K. (1982) Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R Soc. Lond. B Biol. Sci. 215, 241–246.

    Article  CAS  PubMed  Google Scholar 

  9. Zampighi, G.A., Kreman, M., Boorer, K. J., Loo, D. D., Bezanilla, F., Chandy, G., Hall, J. E., and Wright, E. M. (1995) A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J. Membr. Biol. 148, 65–78.

    CAS  PubMed  Google Scholar 

  10. Miledi, R., Eusebi, F., Martinez-Torres, A., Palma, E., and Trettel, F. (2002) Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc. Natl. Acad. Sci. USA 99, 13238–13242.

    Article  CAS  PubMed  Google Scholar 

  11. Miledi, R., Palma, E., and Eusebi, F. (2006) Microtransplantation of neurotransmitter receptors from cells to Xenopus oocyte membranes: new procedure for ion channel studies. Methods Mol. Biol. 322, 347–355.

    Article  CAS  PubMed  Google Scholar 

  12. Maller, J.L., Butcher, F.R., and Krebs, E.G. (1979) Early effect of progesterone on levels of cyclic adenosine 3':5'-monophosphate in Xenopus oocytes. J. Biol. Chem. 254, 579–582.

    CAS  PubMed  Google Scholar 

  13. Uezono, Y., Bradley, J., Min, C., McCarty, N.A., Quick, M., Riordan, J.R., Chavkin, C., Zinn, K., Lester, H.A., and Davidson, N. (1993) Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes. Receptors Channels 1, 233–241.

    CAS  PubMed  Google Scholar 

  14. Landau, E.M. and Blitzer, R.D. (1994) Chloride current assay for phospholipase C in Xenopus oocytes. Methods Enzymol. 238, 140–154.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, Z., Liliom, K., Fischer, D.J., Bathurst, I.C., Tomei, L.D., Kiefer, M.C., and Tigyi, G. (1996) Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc. Natl. Acad. Sci. USA 93, 14367–14372.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrell, J.E., Jr. (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21, 833–842.

    Article  PubMed  Google Scholar 

  17. Wagner, C.A., Ott, M., Klingel, K., Beck, S., Melzig, J., Friedrich, B., Wild, K. N., Broer, S., Moschen, I., Albers, A., Waldegger, S., Tummler, B., Egan, M.E., Geibel, J.P., Kandolf, R., and Lang, F. (2001) Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis. Cell Physiol. Biochem. 11, 209–218.

    Article  CAS  PubMed  Google Scholar 

  18. Trotti, D., Peng, J.B., Dunlop, J., and Hediger, M.A. (2001) Inhibition of the glutamate transporter EAAC1 expressed in Xenopus oocytes by phorbol esters. Brain Res. 914, 196–203.

    Article  CAS  PubMed  Google Scholar 

  19. Levis, R.A. and Rae, J.L. (1992) Constructing a patch clamp setup. Methods Enzymol. 207, 14–66.

    Article  CAS  PubMed  Google Scholar 

  20. Corey, J.L., Davidson, N., Lester, H.A., Brecha, N., and Quick, M.W. (1994) Protein kinase C modulates the activity of a cloned gamma-aminobutyric acid transporter expressed in Xenopus oocytes via regulated subcellular redistribution of the transporter. J. Biol. Chem. 269, 14759–14767.

    CAS  PubMed  Google Scholar 

  21. Chubb, S., Kingsland, A.L., Broer, A., and Broer, S. (2006) Mutation of the 4F2 heavy-chain carboxy terminus causes y+ LAT2 light-chain dysfunction. Mol. Membr. Biol. 23, 255–267.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bröer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bröer, S. (2010). Xenopus laevis Oocytes. In: Yan, Q. (eds) Membrane Transporters in Drug Discovery and Development. Methods in Molecular Biology, vol 637. Humana Press. https://doi.org/10.1007/978-1-60761-700-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-700-6_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-699-3

  • Online ISBN: 978-1-60761-700-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics