Skip to main content

Inhibition of the microRNA Pathway in Zebrafish by siRNA

  • Protocol
  • First Online:
RNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 629))

Abstract

The microRNA (miRNA) pathway and the phenomenon of RNA interference (RNAi), which have both been shown to involve targeting of mRNAs by small RNA molecules, are interconnected and depend partly on the same cellular machinery. RNAi in vertebrates was first reported in zebrafish (Danio rerio) 10 years ago. However, reliable RNAi-based gene silencing techniques, based on injection of small interfering RNAs (siRNAs) into zygotes, have not been established for this important vertebrate model because of unspecific developmental defects. We have recently shown that these side effects can be attributed to inhibition of the miRNA pathway by siRNAs at early embryonic stages. This review highlights these findings and the function of microRNAs in zebrafish development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire, A., Xu, S., Montgomery, M.K. et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein, E., Caudy, A.A., Hammond, S.M. et al. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  3. Lau, N.C., Lim, L.P., Weinstein, E.G. et al. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  4. Reinhart, B.J., Slack, F.J., Basson, M. et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901–906.

    Article  PubMed  CAS  Google Scholar 

  5. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.

    Article  PubMed  CAS  Google Scholar 

  6. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  7. Zeng, Y., Yi, R., and Cullen, B.R. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA, 100, 9779–9784.

    Article  PubMed  CAS  Google Scholar 

  8. Rana, T.M. (2007) Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol, 8, 23–36.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, D.H., Behlke, M.A., Rose, S.D. et al. (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol, 23, 222–226.

    Article  PubMed  CAS  Google Scholar 

  10. Baulcombe, D. (2004) RNA silencing in plants. Nature, 431, 356–363.

    Article  PubMed  CAS  Google Scholar 

  11. Stefani, G. and Slack, F.J. (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol, 9, 219–230.

    Article  PubMed  CAS  Google Scholar 

  12. Kloosterman, W.P. and Plasterk, R.H. (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell, 11, 441–450.

    Article  PubMed  CAS  Google Scholar 

  13. Dillon, C.P., Sandy, P., Nencioni, A. et al. (2005) RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol, 67, 147–173.

    Article  PubMed  CAS  Google Scholar 

  14. Beal, J. (2005) Silence is golden: can RNA interference therapeutics deliver? Drug Discov Today, 10, 169–172.

    Article  PubMed  CAS  Google Scholar 

  15. Hammond, S.M. (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett, 579, 5822–5829.

    Article  PubMed  CAS  Google Scholar 

  16. Yi, R., Qin, Y., Macara, I.G. et al. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011–3016.

    Article  PubMed  CAS  Google Scholar 

  17. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  18. Doench, J.G. and Sharp, P.A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev, 18, 504–511.

    Article  PubMed  CAS  Google Scholar 

  19. Pillai, R.S., Bhattacharyya, S.N., and Filipowicz, W. (2007) Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol, 17, 118–126.

    Article  PubMed  CAS  Google Scholar 

  20. Yekta, S., Shih, I.H., and Bartel, D.P. (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science, 304, 594–596.

    Article  PubMed  CAS  Google Scholar 

  21. Williams, A.E. (2008) Functional aspects of animal microRNAs. Cell Mol Life Sci, 65, 545–562.

    Article  PubMed  CAS  Google Scholar 

  22. Thatcher, E.J., Bond, J., Paydar, I. et al. (2008) Genomic organization of zebrafish microRNAs. BMC Genomics, 9, 253.

    Article  PubMed  Google Scholar 

  23. Landgraf, P., Rusu, M., Sheridan, R. et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.

    Article  PubMed  CAS  Google Scholar 

  24. Berezikov, E., Guryev, V., van de Belt, J. et al. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120, 21–24.

    Article  PubMed  CAS  Google Scholar 

  25. Giraldez, A.J., Mishima, Y., Rihel, J. et al. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science, 312, 75–79.

    Article  PubMed  CAS  Google Scholar 

  26. Lim, L.P., Lau, N.C., Garrett-Engele, P. et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen, S.M. and Brennecke, J. (2006) Developmental biology. Mixed messages in early development. Science, 312, 65–66.

    Article  PubMed  CAS  Google Scholar 

  28. Begemann, G. (2008) MicroRNAs and RNA interference in zebrafish development. Zebrafish, 5, 111–119.

    Article  PubMed  CAS  Google Scholar 

  29. Kloosterman, W.P., Lagendijk, A.K., Ketting, R.F. et al. (2007) Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol, 5, e203.

    Article  PubMed  Google Scholar 

  30. Choi, W.Y., Giraldez, A.J., and Schier, A.F. (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science, 318, 271–274.

    Article  PubMed  CAS  Google Scholar 

  31. Lents, N.H. and Baldassare, J.J. (2006) RNA interference takes flight: a new RNAi screen reveals cell cycle regulators in Drosophila cells. Trends Endocrinol Metab, 17, 173–174.

    Article  PubMed  CAS  Google Scholar 

  32. Coumoul, X. and Deng, C.X. (2006) RNAi in mice: a promising approach to decipher gene functions in vivo. Biochimie, 88, 637–643.

    Article  PubMed  CAS  Google Scholar 

  33. Cullen, L.M. and Arndt, G.M. (2005) Genome-wide screening for gene function using RNAi in mammalian cells. Immunol Cell Biol, 83, 217–223.

    Article  PubMed  CAS  Google Scholar 

  34. Paddison, P.J. (2008) RNA interference in mammalian cell systems. Curr Top Microbiol Immunol, 320, 1–19.

    Article  PubMed  CAS  Google Scholar 

  35. Nguyen, T., Menocal, E.M., Harborth, J. et al. (2008) RNAi therapeutics: an update on delivery. Curr Opin Mol Ther, 10, 158–167.

    PubMed  CAS  Google Scholar 

  36. Durcan, N., Murphy, C., and Cryan, S.A. (2008) Inhalable siRNA: potential as a therapeutic agent in the lungs. Mol Pharm, 5, 559–566.

    Article  PubMed  CAS  Google Scholar 

  37. Wargelius, A., Ellingsen, S., and Fjose, A. (1999) Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun, 263, 156–161.

    Article  PubMed  CAS  Google Scholar 

  38. Gruber, J., Manninga, H., Tuschl, T. et al. (2005) Specific RNAi mediated gene knockdown in zebrafish cell lines. RNA Biol, 2, 101–105.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao, X.F., Fjose, A., Larsen, N. et al. (2008) Treatment with small interfering RNA affects the microRNA pathway and causes unspecific defects in zebrafish embryos. FEBS J, 275, 2177–2184.

    Article  PubMed  CAS  Google Scholar 

  40. Kloosterman, W.P., Steiner, F.A., Berezikov, E. et al. (2006) Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Res, 34, 2558–2569.

    Article  PubMed  CAS  Google Scholar 

  41. Chen, P.Y., Manninga, H., Slanchev, K. et al. (2005) The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev, 19, 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  42. Lim, L.P., Lau, N.C., Weinstein, E.G. et al. (2003) The microRNAs of Caenorhabditis elegans. Genes Dev, 17, 991–1008.

    Article  PubMed  CAS  Google Scholar 

  43. Eisen, J.S. and Smith, J.C. (2008) Controlling morpholino experiments: don’t stop making antisense. Development, 135, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  44. Chen, E. and Ekker, S.C. (2004) Zebrafish as a genomics research model. Curr Pharm Biotechnol, 5, 409–413.

    Article  PubMed  CAS  Google Scholar 

  45. Flynt, A.S., Li, N., Thatcher, E.J. et al. (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet, 39, 259–263.

    Article  PubMed  CAS  Google Scholar 

  46. Valoczi, A., Hornyik, C., Varga, N. et al. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res, 32, e175.

    Article  PubMed  Google Scholar 

  47. Wienholds, E., Kloosterman, W.P., Miska, E. et al. (2005) MicroRNA expression in zebrafish embryonic development. Science, 309, 310–311.

    Article  PubMed  CAS  Google Scholar 

  48. Ason, B., Darnell, D.K., Wittbrodt, B. et al. (2006) Differences in vertebrate microRNA expression. Proc Natl Acad Sci USA, 103, 14385–14389.

    Article  PubMed  CAS  Google Scholar 

  49. Wienholds, E., Koudijs, M.J., van Eeden, F.J. et al. (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet, 35, 217–218.

    Article  PubMed  CAS  Google Scholar 

  50. Bernstein, E., Kim, S.Y., Carmell, M.A. et al. (2003) Dicer is essential for mouse development. Nat Genet, 35, 215–217.

    Article  PubMed  CAS  Google Scholar 

  51. Giraldez, A.J., Cinalli, R.M., Glasner, M.E. et al. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.

    Article  PubMed  CAS  Google Scholar 

  52. Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell, 30, 687–696.

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe, T., Takeda, A., Mise, K. et al. (2005) Stage-specific expression of microRNAs during Xenopus development. FEBS Lett, 579, 318–324.

    Article  PubMed  CAS  Google Scholar 

  54. Lykke-Andersen, K., Gilchrist, M.J., Grabarek, J.B. et al. (2008) Maternal Argonaute 2 is essential for early mouse development at the maternal–zygotic transition. Mol Biol Cell, 19, 4383–4392.

    Article  PubMed  CAS  Google Scholar 

  55. Bushati, N., Stark, A., Brennecke, J. et al. (2008) Temporal reciprocity of miRNAs and their targets during the maternal-to-zygotic transition in Drosophila. Curr Biol, 18, 501–506.

    Article  PubMed  CAS  Google Scholar 

  56. Pearson, J.C., Lemons, D., and McGinnis, W. (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet, 6, 893–904.

    Article  PubMed  CAS  Google Scholar 

  57. Woltering, J.M. and Durston, A.J. (2008) MiR-10 represses HoxB1a and HoxB3a in zebrafish. PLoS ONE, 3, e1396.

    Article  PubMed  Google Scholar 

  58. Tanzer, A., Amemiya, C.T., Kim, C.B. et al. (2005) Evolution of microRNAs located within Hox gene clusters. J Exp Zoolog B Mol Dev Evol, 304, 75–85.

    Article  Google Scholar 

  59. Mansfield, J.H., Harfe, B.D., Nissen, R. et al. (2004) MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet, 36, 1079–1083.

    Article  PubMed  CAS  Google Scholar 

  60. Pase, L., Layton, J.E., Kloosterman, W.P. et al. (2009) miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood, 113, 1794–1804.

    Article  PubMed  CAS  Google Scholar 

  61. Yin, V.P., Thomson, J.M., Thummel, R. et al. (2008) Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev, 22, 728–733.

    Article  PubMed  CAS  Google Scholar 

  62. Morton, S.U., Scherz, P.J., Cordes, K.R. et al. (2008) microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA, 105, 17830–17835.

    Article  PubMed  CAS  Google Scholar 

  63. Li, Y.X., Farrell, M.J., Liu, R. et al. (2000) Double-stranded RNA injection produces null phenotypes in zebrafish. Dev Biol, 217, 394–405.

    Article  PubMed  CAS  Google Scholar 

  64. Hsieh, D.J. and Liao, C.F. (2002) Zebrafish M2 muscarinic acetylcholine receptor: cloning, pharmacological characterization, expression patterns and roles in embryonic bradycardia. Br J Pharmacol, 137, 782–792.

    Article  PubMed  CAS  Google Scholar 

  65. Zhao, Z., Cao, Y., Li, M. et al. (2001) Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev Biol, 229, 215–223.

    Article  PubMed  CAS  Google Scholar 

  66. Oates, A.C., Bruce, A.E., and Ho, R.K. (2000) Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev Biol, 224, 20–28.

    Article  PubMed  CAS  Google Scholar 

  67. Heasman, J. (2002) Morpholino oligos: making sense of antisense? Dev Biol, 243, 209–214.

    Article  PubMed  CAS  Google Scholar 

  68. Ekker, S.C. and Larson, J.D. (2001) Morphant technology in model developmental systems. Genesis, 30, 89–93.

    Article  PubMed  CAS  Google Scholar 

  69. Nasevicius, A. and Ekker, S.C. (2000) Effective targeted gene 'knockdown' in zebrafish. Nat Genet, 26, 216–220.

    Article  PubMed  CAS  Google Scholar 

  70. Stark, G.R., Kerr, I.M., Williams, B.R. et al. (1998) How cells respond to interferons. Annu Rev Biochem, 67, 227–264.

    Article  PubMed  CAS  Google Scholar 

  71. Elbashir, S.M., Harborth, J., Lendeckel, W. et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  72. Kanungo, J., Li, B.S., Zheng, Y. et al. (2006) Cyclin-dependent kinase 5 influences Rohon–Beard neuron survival in zebrafish. J Neurochem, 99, 251–259.

    Article  PubMed  CAS  Google Scholar 

  73. Liu, W.Y., Wang, Y., Sun, Y.H. et al. (2005) Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ, 47, 323–331.

    Article  PubMed  CAS  Google Scholar 

  74. Dodd, A., Chambers, S.P., and Love, D.R. (2004) Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett, 561, 89–93.

    Article  PubMed  CAS  Google Scholar 

  75. Kok, K.H., Ng, M.H., Ching, Y.P. et al. (2007) Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem, 282, 17649–17657.

    Article  PubMed  CAS  Google Scholar 

  76. Haase, A.D., Jaskiewicz, L., Zhang, H. et al. (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep, 6, 961–967.

    Article  PubMed  CAS  Google Scholar 

  77. Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E. et al. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436, 740–744.

    Article  PubMed  CAS  Google Scholar 

  78. Blidner, R.A., Svoboda, K.R., Hammer, R.P. et al. (2008) Photoinduced RNA interference using DMNPE-caged 2'-deoxy-2'-fluoro substituted nucleic acids in vitro and in vivo. Mol Biosyst, 4, 431–440.

    Article  PubMed  CAS  Google Scholar 

  79. Hitz, C., Steuber-Buchberger, P., Delic, S. et al. (2009) Generation of shRNA transgenic mice. Methods Mol Biol, 530, 1–29.

    Article  Google Scholar 

  80. Dietzl, G., Chen, D., Schnorrer, F. et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448, 151–156.

    Article  PubMed  CAS  Google Scholar 

  81. Emelyanov, A. and Parinov, S. (2008) Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. Dev Biol, 320, 113–121.

    Article  PubMed  CAS  Google Scholar 

  82. Asakawa, K., Suster, M.L., Mizusawa, K. et al. (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA, 105, 1255–1260.

    Article  PubMed  CAS  Google Scholar 

  83. Davison, J.M., Akitake, C.M., Goll, M.G. et al. (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol, 304, 811–824.

    Article  PubMed  CAS  Google Scholar 

  84. Robu, M.E., Larson, J.D., Nasevicius, A. et al. (2007) p53 activation by knockdown technologies. PLoS Genet, 3, e78.

    Article  PubMed  Google Scholar 

  85. Scacheri, P.C., Rozenblatt-Rosen, O., Caplen, N.J. et al. (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA, 101, 1892–1897.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Norway project 174979/I30, and the Faculty of Mathematics and Natural Sciences at the University of Bergen.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fjose, A., Zhao, XF. (2010). Inhibition of the microRNA Pathway in Zebrafish by siRNA. In: Sioud, M. (eds) RNA Therapeutics. Methods in Molecular Biology, vol 629. Humana Press. https://doi.org/10.1007/978-1-60761-657-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-657-3_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-656-6

  • Online ISBN: 978-1-60761-657-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics