Skip to main content

Mitochondrial Respiratory Function Decline in Aging and Life-Span Extension by Caloric Restriction

  • Chapter
  • First Online:
Aging and Age-Related Disorders

Abstract

Extensive studies have established that progressive accumulation of somatic mutations in mitochondrial DNA (mtDNA) leads to a decline in mitochondrial bioenergetic function and contributes to human aging. Mitochondrial respiratory chain dysfunction not only causes inefficient ATP production but also increases mitochondrial generation of reactive oxygen species (ROS), which can induce further oxidative damage and mutation to mtDNA during the aging process. Indeed, a wide spectrum of mtDNA mutations has been found to occur in somatic tissues of elderly subjects. Besides, mitochondrial abnormalities have been associated with age-related diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). On the other hand, age-associated reduction in the efficiency of oxidative phosphorylation (OXPHOS) may cause alterations of gene expression in affected tissues for the sake of compensation or adaptation. Recent studies have revealed that the expression levels of several clusters of genes and posttranslational modifications of proteins are changed in various tissues of old animals and cultured cells from elderly subjects. In addition, the changes in age-associated gene expression profiles were tissue-specific, which suggests that different tissues are subject to different degree of oxidative stress during the aging process. Surprisingly, the majority of the age-related alterations in gene expression can be reversed by caloric restriction (CR) through the elevation of sirtuin 1 (Sirt1) expression, which promotes survival in organisms ranging from yeast to rodents and primates. The anti-aging effects of Sirt1 mediated by CR could be conferred by the activation of mitochondrial biogenesis and respiratory function. On the other hand, the mitochondrial sirtuins (Sirt3, Sirt4, and Sirt5) also play a critical role not only in the upregulation of mitochondrial function but also in the protection against oxidative stress and culminate in the extension of the life span of animals. Taking these findings together, we suggest that mitochondrial dysfunction, accumulation of mtDNA mutation, enhanced oxidative stress, and alteration of gene expression are important contributors to human aging. On the other hand, Sirt1 and mitochondrial sirtuins could be the therapeutic targets for the treatment of various age-related diseases such as mitochondrial disorders, neurodegenerative diseases, and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972;20:145–147.

    PubMed  CAS  Google Scholar 

  2. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    PubMed  CAS  Google Scholar 

  3. Richter C, Gogvadze V, Laffranchi R, et al. Oxidants in mitochondria: from physiology to diseases. Biochim Biophys Acta. 1995;1271:67–74.

    Article  PubMed  Google Scholar 

  4. Sohal RS, Sohal BH, Orr WC. Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Biol Med. 1995;19:499–504.

    Article  PubMed  CAS  Google Scholar 

  5. Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol [B]. 1998;168:149–158.

    Article  CAS  Google Scholar 

  6. Lenaz G. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life. 2001;52:159–164.

    Article  PubMed  CAS  Google Scholar 

  7. Wei YH. Mitochondrial DNA alterations as ageing-associated molecular events. Mutat Res. 1992;275:145–155.

    Article  PubMed  CAS  Google Scholar 

  8. Richter C. Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol. 1995;27:647–653.

    Article  PubMed  CAS  Google Scholar 

  9. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 1999;286:774–779.

    Article  PubMed  CAS  Google Scholar 

  10. Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta. 1995;1271:177–189.

    Article  PubMed  Google Scholar 

  11. Miquel J, Economos AC, Fleming J, Johnson JE Jr. Mitochondrial role in cell aging. Exp Gerontol. 1980;15:575–591.

    Article  PubMed  CAS  Google Scholar 

  12. Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH. Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta. 2009;1790:1021–1029.

    Article  PubMed  CAS  Google Scholar 

  13. Johnston AP, De Lisio M, Parise G. Resistance training, sarcopenia, and the mitochondrial theory of aging. Appl Physiol Nutr Metab. 2008;33:191–199.

    Article  PubMed  CAS  Google Scholar 

  14. Gruber J, Schaffer S, Halliwell B. The mitochondrial free radical theory of ageing-where do we stand? Front Biosci. 2008;13:6554–6579.

    Article  PubMed  CAS  Google Scholar 

  15. Shimokawa I, Chiba T, Yamaza H, Komatsu T. Longevity genes: insights from calorie restriction and genetic longevity models. Mol Cells. 2008;26:427–435.

    PubMed  CAS  Google Scholar 

  16. Park SK, Prolla TA. Lessons learned from gene expression profile studies of aging and caloric restriction. Ageing Res Rev. 2005;4:55–65.

    Article  PubMed  CAS  Google Scholar 

  17. Lopez-Lluch G, Irusta PM, Navas P, de Cabo R. Mitochondrial biogenesis and healthy aging. Exp Gerontol. 2008;43:813–819.

    Article  PubMed  CAS  Google Scholar 

  18. Fridovich I. Superoxide anion radical (O2 ), superoxide dismutases, and related matters. J Biol Chem. 1997;272:18515–18517.

    Article  PubMed  CAS  Google Scholar 

  19. Wei Y, Scholes CP, King TE. Ubisemiquinone radicals from the cytochrome b-c 1 complex of the mitochondrial electron transport chain-demonstration of QP-S radical formation. Biochem Biophys Res Commun. 1981;99:1411–1419.

    Article  PubMed  CAS  Google Scholar 

  20. Sohal RS, Ku HH, Agarwal S, Forster MJ, Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev. 1994;74:121–133.

    Article  PubMed  CAS  Google Scholar 

  21. Wei YH, Lu CY, Lee HC, Pang CY, Ma YS. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function. Ann NY Acad Sci. 1998;854:155–170.

    Article  PubMed  CAS  Google Scholar 

  22. Barja G. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc. 2004;79:235–251.

    Article  PubMed  Google Scholar 

  23. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  PubMed  CAS  Google Scholar 

  24. Wallace DC. Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci USA. 1994;91:8739–8746.

    Article  PubMed  CAS  Google Scholar 

  25. Markaryan A, Nelson EG, Hinojosa R. Detection of mitochondrial DNA deletions in the cochlea and its structural elements from archival human temporal bone tissue. Mutat Res. 2008;640:38–45.

    Article  PubMed  CAS  Google Scholar 

  26. Bua E, Johnson J, Herbst A, et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79:469–480.

    Article  PubMed  CAS  Google Scholar 

  27. Meissner C, Bruse P, Oehmichen M. Tissue-specific deletion patterns of the mitochondrial genome with advancing age. Exp Gerontol. 2006;41:518–524.

    Article  PubMed  CAS  Google Scholar 

  28. Meissner C, Bruse P, Mohamed SA, et al. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol. 2008;43:645–652.

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Michikawa Y, Mallidis C, et al. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci USA. 2001;98:4022–4027.

    Article  PubMed  CAS  Google Scholar 

  30. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 2006;38:515–517.

    Article  PubMed  CAS  Google Scholar 

  31. Taylor RW, Barron MJ, Borthwick GM, et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 2003;112:1351–1360.

    PubMed  CAS  Google Scholar 

  32. Zhang J, Asin-Cayuela J, Fish J, et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc Natl Acad Sci USA. 2003;100:1116–1121.

    Article  PubMed  CAS  Google Scholar 

  33. Zhang C, Baumer A, Maxwell RJ, Linnane AW, Nagley P. Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett. 1992;297:34–38.

    Article  PubMed  CAS  Google Scholar 

  34. Jazin EE, Cavelier L, Eriksson I, Oreland L, Gyllensten U. Human brain contains high levels of heteroplasmy in the noncoding regions of mitochondrial DNA. Proc Natl Acad Sci USA. 1996;93:12382–12387.

    Article  PubMed  CAS  Google Scholar 

  35. Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci USA. 2003;100:1838–1843.

    Article  PubMed  CAS  Google Scholar 

  36. McInerny SC, Brown AL, Smith DW. Region-specific changes in mitochondrial D-loop in aged rat CNS. Mech Ageing Dev. 2009;130:343–349.

    Article  PubMed  CAS  Google Scholar 

  37. Khaidakov M, Heflich RH, Manjanatha MG, Myers MB, Aidoo A. Accumulation of point mutations in mitochondrial DNA of aging mice. Mutat Res. 2003;526:1–7.

    Article  PubMed  CAS  Google Scholar 

  38. Lee HC, Pang CY, Hsu HS, Wei YH. Ageing-associated tandem duplications in the D-loop of mitochondrial DNA of human muscle. FEBS Lett. 1994;354:79–83.

    Article  PubMed  CAS  Google Scholar 

  39. Hayakawa M, Hattori K, Sugiyama S, Ozawa T. Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts. Biochem Biophys Res Commun. 1992;189:979–985.

    Article  PubMed  CAS  Google Scholar 

  40. Lee HC, Lim ML, Lu CY, et al. Concurrent increase of oxidative DNA damage and lipid peroxidation together with mitochondrial DNA mutation in human lung tissues during aging–smoking enhances oxidative stress on the aged tissues. Arch Biochem Biophys. 1999;362:309–316.

    Article  PubMed  CAS  Google Scholar 

  41. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res. 1999;423:11–21.

    Article  PubMed  CAS  Google Scholar 

  42. Dumont P, Burton M, Chen QM, et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med. 2000;28:361–373.

    Article  PubMed  CAS  Google Scholar 

  43. Berneburg M, Grether-Beck S, Kurten V, et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biol Chem. 1999;274:15345–15349.

    Article  PubMed  CAS  Google Scholar 

  44. Prithivirajsingh S, Story MD, Bergh SA, et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 2004;571:227–232.

    Article  PubMed  CAS  Google Scholar 

  45. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–423.

    Article  PubMed  CAS  Google Scholar 

  46. Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309:481–484.

    Article  PubMed  CAS  Google Scholar 

  47. Vermulst M, Wanagat J, Kujoth GC, et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet. 2008;40:392–394.

    Article  PubMed  CAS  Google Scholar 

  48. Frahm T, Mohamed SA, Bruse P, Gemund C, Oehmichen M, Meissner C. Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev. 2005;126:1192–1200.

    Article  PubMed  CAS  Google Scholar 

  49. Pak JW, Herbst A, Bua E, Gokey N, McKenzie D, Aiken JM. Mitochondrial DNA mutations as a fundamental mechanism in physiological declines associated with aging. Aging Cell. 2003;2:1–7.

    Article  PubMed  CAS  Google Scholar 

  50. Krishnan KJ, Greaves LC, Reeve AK, Turnbull DM. Mitochondrial DNA mutations and aging. Ann NY Acad Sci. 2007;1100:227–240.

    Article  PubMed  CAS  Google Scholar 

  51. Wanrooij S, Luoma P, van Goethem G, van Broeckhoven C, Suomalainen A, Spelbrink JN. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res. 2004;32:3053–3064.

    Article  PubMed  CAS  Google Scholar 

  52. Trifunovic A, Hansson A, Wredenberg A, et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA. 2005;102:17993–17998.

    Article  PubMed  CAS  Google Scholar 

  53. Khrapko K, Kraytsberg Y, de Grey AD, Vijg J, Schon EA. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell. 2006;5:279–282.

    Article  PubMed  CAS  Google Scholar 

  54. Salvioli S, Capri M, Santoro A, et al. The impact of mitochondrial DNA on human lifespan: a view from studies on centenarians. Biotechnol J. 2008;3:740–749.

    Article  PubMed  CAS  Google Scholar 

  55. Wallace DC. Mitochondria as chi. Genetics. 2008;179:727–735.

    Article  PubMed  CAS  Google Scholar 

  56. Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA. 2005;102:5618–5623.

    Article  PubMed  CAS  Google Scholar 

  57. Drew B, Phaneuf S, Dirks A, et al. Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol. 2003;284:R474–R480.

    PubMed  CAS  Google Scholar 

  58. Chabi B, de Camaret BM, Chevrollier A, Boisgard S, Stepien G. Random mtDNA deletions and functional consequence in aged human skeletal muscle. Biochem Biophys Res Commun. 2005;332:542–549.

    Article  PubMed  CAS  Google Scholar 

  59. Figueiredo PA, Powers SK, Ferreira RM, Appell HJ, Duarte JA. Aging impairs skeletal muscle mitochondrial bioenergetic function. J Gerontol A Biol Sci Med Sci. 2009;64:21–33.

    Article  PubMed  CAS  Google Scholar 

  60. Miyazawa M, Ishii T, Yasuda K, et al. The role of mitochondrial superoxide anion on physiological aging in C57BL/6 J mice. J Radiat Res (Tokyo). 2009;50:73–83.

    Article  CAS  Google Scholar 

  61. Kopsidas G, Kovalenko SA, Kelso JM, Linnane AW. An age-associated correlation between cellular bioenergy decline and mtDNA rearrangements in human skeletal muscle. Mutat Res. 1998;421:27–36.

    Article  PubMed  CAS  Google Scholar 

  62. Oldfors A, Larsson NG, Holme E, Tulinius M, Kadenbach B, Droste M. Mitochondrial DNA deletions and cytochrome c oxidase deficiency in muscle fibres. J Neurol Sci. 1992;110:169–177.

    Article  PubMed  CAS  Google Scholar 

  63. Fayet G, Jansson M, Sternberg D, et al. Ageing muscle: clonal expansions of mitochondrial DNA point mutations and deletions cause focal impairment of mitochondrial function. Neuromuscul Disord. 2002;12:484–493.

    Article  PubMed  Google Scholar 

  64. Ferguson M, Mockett RJ, Shen Y, Orr WC, Sohal RS. Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J. 2005;390:501–511.

    Article  PubMed  CAS  Google Scholar 

  65. Müller-Höcker J, Seibel P, Schneiderbanger K, Kadenbach B. Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibres in the elderly. Virchows Arch A Pathol Anat Histopathol. 1993;422:7–15.

    Article  PubMed  Google Scholar 

  66. Müller-Höcker J, Aust D, Rohrbach H, et al. Defects of the respiratory chain in the normal human liver and in cirrhosis during aging. Hepatology. 1997;26:709–719.

    Article  PubMed  Google Scholar 

  67. Desai VG, Weindruch R, Hart RW, Feuers RJ. Influences of age and dietary restriction on gastrocnemius electron transport system activities in mice. Arch Biochem Biophys. 1996;333:145–151.

    Article  PubMed  CAS  Google Scholar 

  68. Chretien D, Gallego J, Barrientos A, et al. Biochemical parameters for the diagnosis of mitochondrial respiratory chain deficiency in humans, and their lack of age-related changes. Biochem J. 1998;329(Pt 2):249–254.

    PubMed  CAS  Google Scholar 

  69. Yen TC, Chen YS, King KL, Yeh SH, Wei YH. Liver mitochondrial respiratory functions decline with age. Biochem Biophys Res Commun. 1989;165:944–1003.

    Article  PubMed  CAS  Google Scholar 

  70. Horton AA, Spencer JA. Decline in respiratory control ratio of rat liver mitochondria in old age. Mech Ageing Dev. 1981;17:253–259.

    Article  PubMed  CAS  Google Scholar 

  71. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. 1989;i:637–639.

    Article  Google Scholar 

  72. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000;526(Pt 1):203–210.

    Article  PubMed  CAS  Google Scholar 

  73. Kumaran S, Panneerselvam KS, Shila S, Sivarajan K, Panneerselvam C. Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: role of carnitine and lipoic acid. Mol Cell Biochem. 2005;280:83–89.

    Article  PubMed  CAS  Google Scholar 

  74. Hutter E, Renner K, Pfister G, Stockl P, Jansen-Durr P, Gnaiger E. Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. Biochem J. 2004;380:919–928.

    Article  PubMed  CAS  Google Scholar 

  75. Laderman KA, Penny JR, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. Aging-dependent functional alterations of mitochondrial DNA (mtDNA) from human fibroblasts transferred into mtDNA-less cells. J Biol Chem. 1996;271:15891–15897.

    Article  PubMed  CAS  Google Scholar 

  76. Pang CY, Ma YS, Wei YH. MtDNA mutations, functional decline and turnover of mitochondria in aging. Front Biosci. 2008;13:3661–3675.

    Article  PubMed  CAS  Google Scholar 

  77. Greco M, Villani G, Mazzucchelli F, Bresolin N, Papa S, Attardi G. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003;17:1706–1708.

    PubMed  CAS  Google Scholar 

  78. Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med. 2009;46:88–94.

    Article  PubMed  CAS  Google Scholar 

  79. Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C. Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J. 2005;19:419–421.

    PubMed  CAS  Google Scholar 

  80. Lee HC, Yin PH, Chi CW, Wei YH. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci. 2002;9:517–526.

    Article  PubMed  CAS  Google Scholar 

  81. Chen JH, Stoeber K, Kingsbury S, Ozanne SE, Williams GH, Hales CN. Loss of proliferative capacity and induction of senescence in oxidatively stressed human fibroblasts. J Biol Chem. 2004;279:49439–49446.

    Article  PubMed  CAS  Google Scholar 

  82. Debacq-Chainiaux F, Borlon C, Pascal T, et al. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-beta1 signaling pathway. J Cell Sci. 2005;118:743–758.

    Article  PubMed  CAS  Google Scholar 

  83. Yoon YS, Yoon DS, Lim IK, et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J Cell Physiol. 2006;209:468–480.

    Article  PubMed  CAS  Google Scholar 

  84. Byun HO, Kim HY, Lim JJ, Seo YH, Yoon G. Mitochondrial dysfunction by complex II inhibition delays overall cell cycle progression via reactive oxygen species production. J Cell Biochem. 2008;104:1747–1759.

    Article  PubMed  CAS  Google Scholar 

  85. Schroeder P, Gremmel T, Berneburg M, Krutmann J. Partial depletion of mitochondrial DNA from human skin fibroblasts induces a gene expression profile reminiscent of photoaged skin. J Invest Dermatol. 2008;128:2297–2303.

    Article  PubMed  CAS  Google Scholar 

  86. Jeng JY, Yeh TS, Lee JW, Lin SH, Fong TH, Hsieh RH. Maintenance of mitochondrial DNA copy number and expression are essential for preservation of mitochondrial function and cell growth. J Cell Biochem. 2008;103:347–357.

    Article  PubMed  CAS  Google Scholar 

  87. Stockl P, Zankl C, Hutter E, et al. Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells. Free Radic Biol Med. 2007;43:947–958.

    Article  PubMed  CAS  Google Scholar 

  88. Berneburg M, Plettenberg H, Medve-Konig K, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004;122:1277–1283.

    Article  PubMed  CAS  Google Scholar 

  89. Manfredi G, Beal MF. The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathol. 2000;10:462–472.

    Article  PubMed  CAS  Google Scholar 

  90. DiDonato S, Zeviani M, Giovannini P, et al. Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology. 1993;43:2262–2268.

    Article  PubMed  CAS  Google Scholar 

  91. Otaegui D, Paisan C, Saenz A, et al. Mitochondrial polymorphisms in Parkinson’s disease. Neurosci Lett. 2004;370:171–174.

    Article  PubMed  CAS  Google Scholar 

  92. Bosetti F, Brizzi F, Barogi S, et al. Cytochrome c oxidase and mitochondrial F1Fo-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease. Neurobiol Aging. 2002;23:371–376.

    Article  PubMed  CAS  Google Scholar 

  93. Soraru G, Vergani L, Fedrizzi L, et al. Activities of mitochondrial complexes correlate with nNOS amount in muscle from ALS patients. Neuropathol Appl Neurobiol. 2007;33:204–211.

    Article  PubMed  CAS  Google Scholar 

  94. Dupuis L, Gonzalez de Aguilar JL, Oudart H, de Tapia M, Barbeito L, Loeffler JP. Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis. 2004;1:245–254.

    Article  PubMed  Google Scholar 

  95. Wei YH, Lee HC. Mitochondrial DNA mutations and oxidative stress in mitochondrial diseases. Adv Clin Chem. 2003;37:83–128.

    Article  PubMed  CAS  Google Scholar 

  96. Robinson BH. Human complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta. 1998;1364:271–286.

    Article  PubMed  CAS  Google Scholar 

  97. Pang CY, Lee HC, Wei YH. Enhanced oxidative damage in human cells harboring A3243G mutation of mitochondrial DNA: implication of oxidative stress in the pathogenesis of mitochondrial diabetes. Diabetes Res Clin Pract. 2001;54:S45–S56.

    Article  PubMed  CAS  Google Scholar 

  98. Reeve AK, Krishnan KJ, Turnbull D. Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann NY Acad Sci. 2008;1147:21–29.

    Article  PubMed  CAS  Google Scholar 

  99. Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science. 1999;285:1390–1393.

    Article  PubMed  CAS  Google Scholar 

  100. Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet. 2000;25:294–297.

    Article  PubMed  CAS  Google Scholar 

  101. Jiang CH, Tsien JZ, Schultz PG, Hu Y. The effects of aging on gene expression in the hypothalamus and cortex of mice. Proc Natl Acad Sci USA. 2001;98:1930–1934.

    Article  PubMed  CAS  Google Scholar 

  102. Bodyak N, Kang PM, Hiromura M, et al. Gene expression profiling of the aging mouse cardiac myocytes. Nucleic Acids Res. 2002;30:3788–3794.

    Article  PubMed  CAS  Google Scholar 

  103. Cao SX, Dhahbi JM, Mote PL, Spindler SR. Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice. Proc Natl Acad Sci USA. 2001;98:10630–10635.

    Article  PubMed  CAS  Google Scholar 

  104. Tollet-Egnell P, Flores-Morales A, Stahlberg N, Malek RL, Lee N, Norstedt G. Gene expression profile of the aging process in rat liver: normalizing effects of growth hormone replacement. Mol Endocrinol. 2001;15:308–318.

    Article  PubMed  CAS  Google Scholar 

  105. Preston CC, Oberlin AS, Holmuhamedov EL, et al. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev. 2008;129:304–312.

    Article  PubMed  CAS  Google Scholar 

  106. Garnier A, Fortin D, Deloménie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551(Pt 2):491–501.

    Article  PubMed  CAS  Google Scholar 

  107. Linford NJ, Beyer RP, Gollahon K, et al. Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell. 2007;6:673–688.

    Article  PubMed  CAS  Google Scholar 

  108. Gelfi C, Vigano A, Ripamonti M, et al. The human muscle proteome in aging. J Proteome Res. 2006;5:1344–1353.

    Article  PubMed  CAS  Google Scholar 

  109. Li M, Xiao ZQ, Chen ZC, et al. Proteomic analysis of the aging-related proteins in human normal colon epithelial tissue. J Biochem Mol Biol. 2007;40:72–81.

    Article  PubMed  CAS  Google Scholar 

  110. Feng J, Xie H, Meany DL, Thompson LV, Arriaga EA, Griffin TJ. Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J Gerontol A Biol Sci Med Sci. 2008;63:1137–1152.

    Article  PubMed  Google Scholar 

  111. Rebrin I, Brégère C, Kamzalov S, Gallaher TK, Sohal RS. Nitration of tryptophan 372 in succinyl-CoA: 3-ketoacid CoA transferase during aging in rat heart mitochondria. Biochemistry. 2007;46:10130–10144.

    Article  PubMed  CAS  Google Scholar 

  112. Bregere C, Rebrin I, Sohal RS. Detection and characterization of in vivo nitration and oxidation of tryptophan residues in proteins. Methods Enzymol. 2008;441:339–348.

    Article  PubMed  CAS  Google Scholar 

  113. Dencher NA, Frenzel M, Reifschneider NH, Sugawa M, Krause F. Proteome alterations in rat mitochondria caused by aging. Ann NY Acad Sci. 2007;1100:291–298.

    Article  PubMed  CAS  Google Scholar 

  114. Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K. Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med. 2008;22:33–42.

    PubMed  CAS  Google Scholar 

  115. Lin G, Brownsey RW, MacLeod KM. Regulation of mitochondrial aconitase by phosphorylation in diabetic rat heart. Cell Mol Life Sci. 2009;66:919–932.

    Article  PubMed  CAS  Google Scholar 

  116. Weindruch R, Kayo T, Lee CK, Prolla TA. Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr. 2001;131:918S–923S.

    PubMed  CAS  Google Scholar 

  117. Park SK, Prolla TA. Gene expression profiling studies of aging in cardiac and skeletal muscles. Cardiovasc Res. 2005;66:205–212.

    Article  PubMed  CAS  Google Scholar 

  118. Lass A, Sohal BH, Weindruch R, Forster MJ, Sohal RS. Caloric restriction prevents age-associated accrual of oxidative damage to mouse skeletal muscle mitochondria. Free Radic Biol Med. 1998;25:1089–1097.

    Article  PubMed  CAS  Google Scholar 

  119. Sreekumar R, Unnikrishnan J, Fu A, et al. Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab. 2002;283:E38–E43.

    PubMed  CAS  Google Scholar 

  120. Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4:e76.

    Article  PubMed  CAS  Google Scholar 

  121. Colom B, Oliver J, Roca P, Garcia-Palmer FJ. Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res. 2007;74:456–465.

    Article  PubMed  CAS  Google Scholar 

  122. Longo VD, Kennedy BK. Sirtuins in aging and age-related disease. Cell. 2006;126:257–268.

    Article  PubMed  CAS  Google Scholar 

  123. Dali-Youcef N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J. Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann Med. 2007;39:335–345.

    Article  PubMed  CAS  Google Scholar 

  124. Lin SJ, Kaeberlein M, Andalis AA, et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature. 2002;418:344–348.

    Article  PubMed  CAS  Google Scholar 

  125. Guarente L, Picard F. Calorie restriction-the SIR2 connection. Cell. 2005;120:473–482.

    Article  PubMed  CAS  Google Scholar 

  126. Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004;305:390–392.

    Article  PubMed  CAS  Google Scholar 

  127. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell. 2001;107:149–159.

    Article  PubMed  CAS  Google Scholar 

  128. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–2015.

    Article  PubMed  CAS  Google Scholar 

  129. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429:771–776.

    Article  PubMed  CAS  Google Scholar 

  130. Nisoli E, Tonello C, Cardile A, et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005;310:314–317.

    Article  PubMed  CAS  Google Scholar 

  131. Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science. 2005;310:1641.

    Article  PubMed  CAS  Google Scholar 

  132. Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759–767.

    Article  PubMed  CAS  Google Scholar 

  133. Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell. 2004;13:627–638.

    Article  PubMed  CAS  Google Scholar 

  134. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116:551–563.

    Article  PubMed  CAS  Google Scholar 

  135. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–118.

    Article  PubMed  CAS  Google Scholar 

  136. Guarente L. Sirtuins as potential targets for metabolic syndrome. Nature. 2006;444:868–874.

    Article  PubMed  CAS  Google Scholar 

  137. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007;26:1913–1923.

    Article  PubMed  CAS  Google Scholar 

  138. Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–1122.

    Article  PubMed  CAS  Google Scholar 

  139. Bordone L, Motta MC, Picard F, et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 2006;4:e31.

    Article  PubMed  CAS  Google Scholar 

  140. Hansen M, Hsu AL, Dillin A, Kenyon C. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet. 2005;1:119–128.

    Article  PubMed  CAS  Google Scholar 

  141. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–7425.

    Article  PubMed  CAS  Google Scholar 

  142. Hallows WC, Lee S, Denu JM. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA. 2006;103:10230–10235.

    Article  PubMed  CAS  Google Scholar 

  143. Shi T, Wang F, Stieren E, Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem. 2005;280:13560–13567.

    Article  PubMed  CAS  Google Scholar 

  144. Ahn BH, Kim HS, Song S, et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA. 2008;105:14447–14452.

    Article  PubMed  CAS  Google Scholar 

  145. Bellizzi D, Rose G, Cavalcante P, et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics. 2005;85:258–263.

    Article  PubMed  CAS  Google Scholar 

  146. Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006;126:941–954.

    Article  PubMed  CAS  Google Scholar 

  147. Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009;137:560–570.

    Article  PubMed  CAS  Google Scholar 

  148. Yang H, Yang T, Baur JA, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–1107.

    Article  PubMed  CAS  Google Scholar 

  149. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–196.

    Article  PubMed  CAS  Google Scholar 

  150. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–273.

    Article  PubMed  CAS  Google Scholar 

  151. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003;100:8466–8471.

    Article  PubMed  CAS  Google Scholar 

  152. Ashmore LJ, Hrizo SL, Paul SM, Van Voorhies WA, Beitel GJ, Palladino MJ. Novel mutations affecting the Na, K ATPase alpha model complex neurological diseases and implicate the sodium pump in increased longevity. Hum Genet. 2009;126:431–447 .

    Article  PubMed  CAS  Google Scholar 

  153. Chen YF, Kao CH, Chen YT, et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 2009;23:1183–1194.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The results described in this chapter were supported by research grants from the National Science Council (NSC96-2320-B-010-006 and NSC97-2320-B-010-013-MY3), Executive Yuan, Taiwan. One of the authors, Yau-Huei Wei, withes to express his appreciation to the Nation Science Council of Taiwan for the long-term support on the studies of the mitochondrial role in human aging and age-related diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Huei Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LCC

About this chapter

Cite this chapter

Wu, SB., Wu, YT., Wang, CH., Lee, WY., Wei, YH. (2010). Mitochondrial Respiratory Function Decline in Aging and Life-Span Extension by Caloric Restriction. In: Bondy, S., Maiese, K. (eds) Aging and Age-Related Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-602-3_7

Download citation

Publish with us

Policies and ethics