Skip to main content

Vaccine Therapy for Lung Cancer

  • Chapter
  • First Online:
Lung Cancer

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Evidence of lung cancer sensitivity to immune reactivity continues to accumulate. However, consistent therapeutic opportunities remain limited. Recently, as a result of increased awareness of immunoreactive components and new technological development, a new crop of therapeutic vaccines are being explored for the purpose of modulating immunity against lung cancer. This review summarizes the key investigative opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and lymphocytes prevent primary tumor development and shape tumour immunogenicity. Nature 410:1107-1111

    Article  PubMed  CAS  Google Scholar 

  2. Bell JW (1970) Possible immune factors in spontaneous regression of bronchogenic carcinoma. Ten year survival in a patient treated with minimal (1, 200 r) radiation alone. Am J Surg 120(6):804-806

    Article  PubMed  CAS  Google Scholar 

  3. Ruckdeschel JC, Codish SD, Stranahan A, McKneally MF (1972) Postoperative empyema improves survival in lung cancer. Documentation and analysis of a natural experiment. N Engl J Med 287(20):1013-1017

    Article  PubMed  CAS  Google Scholar 

  4. Wei YQ, Hang ZB (1989) In situ observation of lymphocyte-tumor cell interaction in human lung carcinoma. Immunol Invest 18(9-10):1095-1105

    Article  PubMed  CAS  Google Scholar 

  5. Hanna N, Shepherd FA, Fossella FV et al (2004) Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol 22(9):1589-1597

    Article  PubMed  CAS  Google Scholar 

  6. Tsao MS, Sakurada A, Cutz JC et al (2005) Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med 353(2):133-144

    Article  PubMed  CAS  Google Scholar 

  7. Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123-132

    Article  PubMed  CAS  Google Scholar 

  8. Kris MG, Natale RB, Herbst RS et al (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290(16):2149-2158

    Article  PubMed  CAS  Google Scholar 

  9. Nemunaitis J (2005) Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines 4(3):259-274

    Article  PubMed  CAS  Google Scholar 

  10. Nemunaitis J, Sterman D, Jablons D et al (2004) Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 96(4):326-331

    Article  PubMed  CAS  Google Scholar 

  11. Fakhrai H, Gramatikova S, Safaei R (2001) Down-regulation of TGF-beta 2 as a therapeutic approach. In: Brain tumor immunotherapy. Humana Press, Totowa, New Jersey, pp. 289-305.

    Google Scholar 

  12. Dorigo O, Shawler DL, Royston I, Sobol RE, Berek JS, Fakhrai H (1998) Combination of transforming growth factor beta antisense and interleukin-2 gene therapy in the murine ovarian teratoma model. Gynecol Oncol 71(2):204-210

    Article  PubMed  CAS  Google Scholar 

  13. Tzai TS, Shiau AL, Liu LL, Wu CL (2000) Immunization with TGF-beta antisense oligonucleotide-modified autologous tumor vaccine enhances the antitumor immunity of MBT-2 tumor-bearing mice through upregulation of MHC class I and Fas expressions. Anticancer Res 20(3A):1557-1562

    PubMed  CAS  Google Scholar 

  14. Tzai TS, Lin CI, Shiau AL, Wu CL (1998) Antisense oligonucleotide specific for transforming growth factor-beta 1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer. Anticancer Res 18(3A):1585-1589

    PubMed  CAS  Google Scholar 

  15. Marzo AL, Fitzpatrick DR, Robinson BW, Scott B (1997) Antisense oligonucleotides specific for transforming growth factor beta2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Res 57(15):3200-3207

    PubMed  CAS  Google Scholar 

  16. Park JA, Wang E, Kurt RA, Schluter SF, Hersh EM, Akporiaye ET (1997) Expression of an antisense transforming growth factor-beta1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Ther 4(1):42-50

    PubMed  CAS  Google Scholar 

  17. Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46(2):82-87

    Article  PubMed  CAS  Google Scholar 

  18. Timmerman JM, Levy R (1999) Dendritic cell vaccines for cancer immunotherapy. Annu Rev Med 50:507-529

    Article  PubMed  CAS  Google Scholar 

  19. Conrad C, Nestle FO (2003) Dendritic cell-based cancer therapy. Curr Opin Mol Ther 5(4):405-412

    PubMed  Google Scholar 

  20. Keilholz U, Weber J, Finke JH et al (2002) Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 25(2):97-138

    Article  PubMed  Google Scholar 

  21. Cranmer LD, Trevor KT, Hersh EM (2004) Clinical applications of dendritic cell vaccination in the treatment of cancer. Cancer Immunol Immunother 53(4):275-306

    Article  PubMed  Google Scholar 

  22. Hirschowitz EA, Foody T, Kryscio R, Dickson L, Sturgill J, Yannelli J (2004) Autologous dendritic cell vaccines for non-small-cell lung cancer. J Clin Oncol 22(14):2808-2815

    Article  PubMed  Google Scholar 

  23. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767-811

    Article  PubMed  CAS  Google Scholar 

  24. Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76(2):287-299

    Article  PubMed  CAS  Google Scholar 

  25. McAdam AJ, Schweitzer AN, Sharpe AH (1998) The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol Rev 165:231-247

    Article  PubMed  CAS  Google Scholar 

  26. Pulendran B, Smith JL, Caspary G et al (1999) Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 96(3):1036-1041

    Article  PubMed  CAS  Google Scholar 

  27. Akbari O, DeKruyff RH, Umetsu DT (2001) Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2(8):725-731

    Article  PubMed  CAS  Google Scholar 

  28. Woo EY, Yeh H, Chu CS et al (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168(9):4272-4276

    PubMed  CAS  Google Scholar 

  29. Woo EY, Chu CS, Goletz TJ et al (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61(12):4766-4772

    PubMed  CAS  Google Scholar 

  30. Neuner A, Schindel M, Wildenberg U, Muley T, Lahm H, Fischer JR (2002) Prognostic significance of cytokine modulation in non-small cell lung cancer. Int J Cancer 101(3):287-292

    Article  PubMed  CAS  Google Scholar 

  31. Neuner A, Schindel M, Wildenberg U, Muley T, Lahm H, Fischer JR (2001) Cytokine secretion: clinical relevance of immunosuppression in non-small cell lung cancer. Lung Cancer 34(Suppl 2):S79-S82

    Article  PubMed  Google Scholar 

  32. Dohadwala M, Luo J, Zhu L et al (2001) Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. J Biol Chem 276(24):20809-20812

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz RH (1996) Models of T cell anergy: is there a common molecular mechanism? J Exp Med 184(1):1-8

    Article  PubMed  CAS  Google Scholar 

  34. Lombardi G, Sidhu S, Batchelor R, Lechler R (1994) Anergic T cells as suppressor cells in vitro. Science 264(5165):1587-1589

    Article  PubMed  CAS  Google Scholar 

  35. Ruffini PA, Rivoltini L, Silvani A, Boiardi A, Parmiani G (1993) Factors, including transforming growth factor beta, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells. Cancer Immunol Immunother 36(6):409-416

    Article  PubMed  CAS  Google Scholar 

  36. Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12(10):370-374

    Article  PubMed  CAS  Google Scholar 

  37. Smith KA (1988) Interleukin-2: inception, impact, and implications. Science 240(4856):1169-1176

    Article  PubMed  CAS  Google Scholar 

  38. Smith KA (1993) Lowest dose interleukin-2 immunotherapy. Blood 81(6):1414-1423

    PubMed  CAS  Google Scholar 

  39. Tigges MA, Casey LS, Koshland ME (1989) Mechanism of interleukin-2 signaling: mediation of different outcomes by a single receptor and transduction pathway. Science 243(4892):781-786

    Article  PubMed  CAS  Google Scholar 

  40. Rook AH, Kehrl JH, Wakefield LM et al (1986) Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol 136(10):3916-3920

    PubMed  CAS  Google Scholar 

  41. Tsunawaki S, Sporn M, Ding A, Nathan C (1988) Deactivation of macrophages by transforming growth factor-beta. Nature 334(6179):260-262

    Article  PubMed  CAS  Google Scholar 

  42. Fontana A, Frei K, Bodmer S et al (1989) Transforming growth factor-beta inhibits the generation of cytotoxic T cells in virus-infected mice. J Immunol 143(10):3230-3234

    PubMed  CAS  Google Scholar 

  43. Hirte HW, Clark DA, O’Connell G, Rusthoven J, Mazurka J (1992) Reversal of suppression of lymphokine-activated killer cells by transforming growth factor-beta in ovarian carcinoma ascitic fluid requires interleukin-2 combined with anti-CD3 antibody. Cell Immunol 142(1):207-216

    Article  PubMed  CAS  Google Scholar 

  44. Ranges GE, Figari IS, Espevik T, Palladino MA Jr (1987) Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med 166(4):991-998

    Article  PubMed  CAS  Google Scholar 

  45. Nemunaitis J, Dillman RO, Schwarzenberger PO et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24(29):4721-4730

    Article  PubMed  CAS  Google Scholar 

  46. Sporn MB, Roberts AB, Wakefield LM, Assoian RK (1986) Transforming growth factor-beta: biological function and chemical structure. Science 233(4763):532-534

    Article  PubMed  CAS  Google Scholar 

  47. Massague J (1987) The TGF-beta family of growth and differentiation factors. Cell 49(4):437-438

    Article  PubMed  CAS  Google Scholar 

  48. Border WA, Ruoslahti E (1992) Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest 90(1):1-7

    Article  PubMed  CAS  Google Scholar 

  49. Bodmer S, Strommer K, Frei K et al (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143(10):3222-3229

    PubMed  CAS  Google Scholar 

  50. Jakowlew SB, Mathias A, Chung P, Moody TW (1995) Expression of transforming growth factor beta ligand and receptor messenger RNAs in lung cancer cell lines. Cell Growth Differ 6(4):465-476

    PubMed  CAS  Google Scholar 

  51. Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A (1992) Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148(5):1404-1410

    PubMed  CAS  Google Scholar 

  52. Kong F, Jirtle RL, Huang DH, Clough RW, Anscher MS (1999) Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86(9):1712-1719

    Article  PubMed  CAS  Google Scholar 

  53. Kasid A, Bell GI, Director EP (1988) Effects of transforming growth factor-beta on human lymphokine-activated killer cell precursors. Autocrine inhibition of cellular proliferation and differentiation to immune killer cells. J Immunol 141(2):690-698

    PubMed  CAS  Google Scholar 

  54. Hirte H, Clark DA (1991) Generation of lymphokine-activated killer cells in human ovarian carcinoma ascitic fluid: identification of transforming growth factor-beta as a suppressive factor. Cancer Immunol Immunother 32(5):296-302

    Article  PubMed  CAS  Google Scholar 

  55. Naganuma H, Sasaki A, Satoh E et al (1996) Transforming growth factor-beta inhibits interferon-gamma secretion by lymphokine-activated killer cells stimulated with tumor cells. Neurol Med Chir (Tokyo) 36(11):789-795

    Article  CAS  Google Scholar 

  56. Fakhrai H, Mantil JC, Liu L et al (2006) Phase I clinical trial of TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13(12):1052-1060

    Article  PubMed  CAS  Google Scholar 

  57. Liau LM, Fakhrai H, Black KL (1998) Prolonged survival of rats with intracranial C6 gliomas by treatment with TGF-beta antisense gene. Neurol Res 20(8):742-747

    PubMed  CAS  Google Scholar 

  58. Kettering JD, Mohamedali AM, Green LM, Gridley DS (2003) IL-2 gene and antisense TGF-beta1 strategies counteract HSV-2 transformed tumor progression. Technol Cancer Res Treat 2(3):211-221

    PubMed  CAS  Google Scholar 

  59. Fakhrai H, Dorigo O, Shawler DL et al (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 93(7):2909-2914

    Article  PubMed  CAS  Google Scholar 

  60. Shepherd FA, Dancey J, Ramlau R et al (2000) Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 18(10):2095-2103

    PubMed  CAS  Google Scholar 

  61. Fossella FV, DeVore R, Kerr RN et al (2000) Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J Clin Oncol 18(12):2354-2362

    PubMed  CAS  Google Scholar 

  62. Nemunaitis J, Nemunaitis M, Senzer N et al (2009) Phase II trial of belagenpumatucel-L, a TGF-β2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther 16(8):620-624

    Article  PubMed  CAS  Google Scholar 

  63. Dranoff G, Jaffee E, Lazenby A et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90(8):3539-3543

    Article  PubMed  CAS  Google Scholar 

  64. Scheffer SR, Nave H, Korangy F et al (2003) Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103(2):205-211

    Article  PubMed  CAS  Google Scholar 

  65. Borrello I, Pardoll D (2002) GM-CSF-based cellular vaccines: a review of the clinical experience. Cytokine Growth Factor Rev 13(2):185-193

    Article  PubMed  CAS  Google Scholar 

  66. Jaffee EM, Thomas MC, Huang AY, Hauda KM, Levitsky HI, Pardoll DM (1996) Enhanced immune priming with spatial distribution of paracrine cytokine vaccines. J Immunother Emphasis Tumor Immunol 19(3):176-183

    Article  PubMed  CAS  Google Scholar 

  67. Couch M, Saunders JK, O’Malley BW Jr, Pardoll D, Jaffee E (2003) Genetically engineered tumor cell vaccine in a head and neck cancer model. Laryngoscope 113(3):552-556

    Article  PubMed  Google Scholar 

  68. Simons JW, Mikhak B, Chang JF et al (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 59(20):5160-5168

    PubMed  CAS  Google Scholar 

  69. Soiffer R, Lynch T, Mihm M et al (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95(22):13141-13146

    Article  PubMed  CAS  Google Scholar 

  70. Simons JW, Jaffee EM, Weber CE et al (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 57(8):1537-1546

    PubMed  CAS  Google Scholar 

  71. Jaffee EM, Hruban RH, Biedrzycki B et al (2001) Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 19(1):145-156

    PubMed  CAS  Google Scholar 

  72. Salgia R, Lynch T, Skarin A et al (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 21(4):624-630

    Article  PubMed  Google Scholar 

  73. Soiffer R, Hodi FS, Haluska F et al (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21(17):3343-3350

    Article  PubMed  CAS  Google Scholar 

  74. Nemunaitis J, Jahan T, Ross H et al (2006) Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 13(6):555-562

    Article  PubMed  CAS  Google Scholar 

  75. Kufe D, Inghirami G, Abe M, Hayes D, Justi-Wheeler H, Schlom J (1984) Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors. Hybridoma 3(3):223-232

    Article  PubMed  CAS  Google Scholar 

  76. Burchell J, Gendler S, Taylor-Papadimitriou J et al (1987) Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res 47(20):5476-5482

    PubMed  CAS  Google Scholar 

  77. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265(25):15286-15293

    PubMed  CAS  Google Scholar 

  78. Li Y, Liu D, Chen D, Kharbanda S, Kufe D (2003) Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22(38):6107-6110

    Article  PubMed  CAS  Google Scholar 

  79. Ren J, Agata N, Chen D et al (2004) Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell 5(2):163-175

    Article  PubMed  CAS  Google Scholar 

  80. MacLean GD, Reddish MA, Koganty RR, Longenecker BM (1996) Antibodies against mucin-associated sialyl-Tn epitopes correlate with survival of metastatic adenocarcinoma patients undergoing active specific immunotherapy with synthetic STn vaccine. J Immunother Emphasis Tumor Immunol 19(1):59-68

    Article  PubMed  CAS  Google Scholar 

  81. Butts C, Murray N, Maksymiuk A et al (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 23(27):6674-6681

    Article  PubMed  CAS  Google Scholar 

  82. Slodkowska J, Szturmowicz M, Rudzinski P et al (1998) Expression of CEA and trophoblastic cell markers by lung carcinoma in association with histological characteristics and serum marker levels. Eur J Cancer Prev 7(1):51-60

    PubMed  CAS  Google Scholar 

  83. Fijolek J, Wiatr E, Rowinska-Zakrzewska E et al (2006) p53 and HER2/neu expression in relation to chemotherapy response in patients with non-small cell lung cancer. Int J Biol Markers 21(2):81-87

    PubMed  CAS  Google Scholar 

  84. Tsao MS, Aviel-Ronen S, Ding K et al (2007) Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol 25(33):5240-5247

    Article  PubMed  Google Scholar 

  85. Brabender J, Danenberg KD, Metzger R et al (2001) Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer is correlated with survival. Clin Cancer Res 7(7):1850-1855

    PubMed  CAS  Google Scholar 

  86. Vallbohmer D, Brabender J, Yang DY et al (2006) Sex differences in the predictive power of the molecular prognostic factor HER2/neu in patients with non-small-cell lung cancer. Clin Lung Cancer 7(5):332-337

    Article  PubMed  CAS  Google Scholar 

  87. Sienel W, Varwerk C, Linder A et al (2004) Melanoma associated antigen (MAGE)-A3 expression in Stages I and II non-small cell lung cancer: results of a multi-center study. Eur J Cardiothorac Surg 25(1):131-134

    Article  PubMed  CAS  Google Scholar 

  88. Marshall JL, Hoyer RJ, Toomey MA et al (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18(23):3964-3973

    PubMed  CAS  Google Scholar 

  89. Fong L, Hou Y, Rivas A et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98(15):8809-8814

    Article  PubMed  CAS  Google Scholar 

  90. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107(4):477-484

    Article  PubMed  CAS  Google Scholar 

  91. Rosenberg SA, Yang JC, Schwartzentruber DJ et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4(3):321-327

    Article  PubMed  CAS  Google Scholar 

  92. Arlen P, Tsang KY, Marshall JL et al (2000) The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide vs. recombinant poxvirus vaccines. Cancer Immunol Immunother 49(10):517-529

    Article  PubMed  CAS  Google Scholar 

  93. Horig H, Lee DS, Conkright W et al (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49(9):504-514

    Article  PubMed  CAS  Google Scholar 

  94. Vierboom MP, Nijman HW, Offringa R et al (1997) Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med 186(5):695-704

    Article  PubMed  CAS  Google Scholar 

  95. Vierboom MP, Bos GM, Ooms M, Offringa R, Melief CJ (2000) Cyclophosphamide enhances anti-tumor effect of wild-type p53-specific CTL. Int J Cancer 87(2):253-260

    Article  PubMed  CAS  Google Scholar 

  96. Rosenwirth B, Kuhn EM, Heeney JL et al (2001) Safety and immunogenicity of ALVAC wild-type human p53 (vCP207) by the intravenous route in rhesus macaques. Vaccine 19(13-14):1661-1670

    Article  PubMed  CAS  Google Scholar 

  97. van der Burg SH, de Cock K, Menon AG et al (2001) Long lasting p53-specific T cell memory responses in the absence of anti-p53 antibodies in patients with resected primary colorectal cancer. Eur J Immunol 31(1):146-155

    Article  PubMed  Google Scholar 

  98. Ferries E, Connan F, Pages F et al (2001) Identification of p53 peptides recognized by CD8(+) T lymphocytes from patients with bladder cancer. Hum Immunol 62(8):791-798

    Article  PubMed  CAS  Google Scholar 

  99. Tartaglia J, Bonnet MC, Berinstein N, Barber B, Klein M, Moingeon P (2001) Therapeutic vaccines against melanoma and colorectal cancer. Vaccine 19(17-19):2571-2575

    Article  PubMed  CAS  Google Scholar 

  100. http://www.clinicaltrials.gov (2002)

  101. van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643-1647

    Article  PubMed  Google Scholar 

  102. Thurner B, Haendle I, Roder C et al (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190(11):1669-1678

    Article  PubMed  CAS  Google Scholar 

  103. Weber JS, Hua FL, Spears L, Marty V, Kuniyoshi C, Celis E (1999) A phase I trial of an HLA-A1 restricted MAGE-3 epitope peptide with incomplete Freund’s adjuvant in patients with resected high-risk melanoma. J Immunother 22(5):431-440

    Article  PubMed  CAS  Google Scholar 

  104. Coulie PG, Karanikas V, Colau D et al (2001) A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA 98(18):10290-10295

    Article  PubMed  CAS  Google Scholar 

  105. Banchereau J, Palucka AK, Dhodapkar M et al (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61(17):6451-6458

    PubMed  CAS  Google Scholar 

  106. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707-712

    Article  PubMed  CAS  Google Scholar 

  107. Disis ML, Calenoff E, McLaughlin G et al (1994) Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 54(1):16-20

    PubMed  CAS  Google Scholar 

  108. Alexander J, Sidney J, Southwood S et al (1994) Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity 1(9):751-761

    Article  PubMed  CAS  Google Scholar 

  109. Ishioka GY, Disis ML, Morse MA et al (2004) Multi-epitope CTL responses induced by a peptide vaccine (EP-2101) in colon and non-small cell lung cancer patients [Abstract]. J Immunother 27(6):S23-S24

    Article  Google Scholar 

  110. Antonia SJ, Seigne J, Diaz J et al (2002) Phase I trial of a B7-1 (CD80) gene modified autologous tumor cell vaccine in combination with systemic interleukin-2 in patients with metastatic renal cell carcinoma. J Urol 167(5):1995-2000

    Article  PubMed  CAS  Google Scholar 

  111. Hull GW, McCurdy MA, Nasu Y et al (2000) Prostate cancer gene therapy: comparison of adenovirus-mediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin Cancer Res 6(10):4101-4109

    PubMed  CAS  Google Scholar 

  112. von Mehren M, Arlen P, Tsang KY et al (2000) Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res 6(6):2219-2228

    Google Scholar 

  113. Johnston JV, Malacko AR, Mizuno MT et al (1996) B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted CD8+ cytolytic T lymphocytes. J Exp Med 183(3):791-800

    Article  PubMed  CAS  Google Scholar 

  114. Liu B, Podack ER, Allison JP, Malek TR (1996) Generation of primary tumor-specific CTL in vitro to immunogenic and poorly immunogenic mouse tumors. J Immunol 156(3):1117-1125

    PubMed  CAS  Google Scholar 

  115. Nabel GJ, Gordon D, Bishop DK et al (1996) Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci USA 93(26):15388-15393

    Article  PubMed  CAS  Google Scholar 

  116. Yamazaki K, Spruill G, Rhoderick J, Spielman J, Savaraj N, Podack ER (1999) Small cell lung carcinomas express shared and private tumor antigens presented by HLA-A1 or HLA-A2. Cancer Res 59(18):4642-4650

    PubMed  CAS  Google Scholar 

  117. Raez LE, Cassileth PA, Schlesselman JJ et al (2004) Allogeneic vaccination with a B7.1 HLA-A gene-modified adenocarcinoma cell line in patients with advanced non-small-cell lung cancer. J Clin Oncol 22(14):2800-2807

    Article  PubMed  CAS  Google Scholar 

  118. Raez LE, Santos ES, Mudad R, Podack ER (2005) Clinical trials targeting lung cancer with active immunotherapy: the scope of vaccines. Expert Rev Anticancer Ther 5(4):635-644

    Article  PubMed  CAS  Google Scholar 

  119. Mueller-Pillasch F, Pohl B, Wilda M et al (1999) Expression of the highly conserved RNA binding protein KOC in embryogenesis. Mech Dev 88(1):95-99

    Article  PubMed  CAS  Google Scholar 

  120. Aguiar JC, Hedstrom RC, Rogers WO et al (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20(1-2):275-280

    Article  PubMed  CAS  Google Scholar 

  121. Nemunaitis JMT, Senzer N, Cunningham C, Anthony S, Vukelja S, Berman B, Sarmiento S, Arzaga R, Cheever M (2006) Phase I trial of sequential administration of recombinant DNA and adenoviral expressing L523S protein in early stage non small cell lung cancer (NSCLC). Mol Ther 13(6):1185-1191

    Article  PubMed  CAS  Google Scholar 

  122. Ramos TC, Vinageras E, Ferrer MC et al (2006) Treatment of NSCLC patients with an EGF-based cancer vaccine: report of a phase I trial. Cancer Biol Ther 5:145-149

    Article  PubMed  CAS  Google Scholar 

  123. Gonzalez G, Crombet T, Catala M et al (1998) A novel cancer vaccine composed of human-recombinant epidermal growth factor linked to a carrier protein: report of a pilot clinical trial. Ann Oncol 9(4):431-435

    Article  PubMed  CAS  Google Scholar 

  124. Gonzalez G, Crombet T, Torres F et al (2003) Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy. Ann Oncol 14:461-466

    Article  PubMed  CAS  Google Scholar 

  125. Van den Eynde BJ, van der Bruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9(5):684-693

    Article  PubMed  Google Scholar 

  126. Herman J, van der Bruggen P, Luescher IF et al (1996) A peptide encoded by the human MAGE3 gene and presented by HLA-B44 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE3. Immunogenetics 43(6):377-383

    Article  PubMed  CAS  Google Scholar 

  127. Fleischhauer K, Fruci D, Van Endert P et al (1996) Characterization of antigenic peptides presented by HLA-B44 molecules on tumor cells expressing the gene MAGE-3. Int J Cancer 68(5):622-628

    Article  PubMed  CAS  Google Scholar 

  128. Tanaka F, Fujie T, Tahara K et al (1997) Induction of antitumor cytotoxic T lymphocytes with a MAGE-3-encoded synthetic peptide presented by human leukocytes antigen-A24. Cancer Res 57(20):4465-4468

    PubMed  CAS  Google Scholar 

  129. Kawashima I, Hudson SJ, Tsai V et al (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various trumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1-14

    Article  PubMed  CAS  Google Scholar 

  130. Oiso M, Eura M, Katsura F et al (1999) A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int J Cancer 81(3):387-394

    Article  PubMed  CAS  Google Scholar 

  131. Tanzarella S, Russo V, Lionello I et al (1999) Identification of a promiscuous T-cell epitope encoded by multiple members of the MAGE family. Cancer Res 59(11):2668-2674

    PubMed  CAS  Google Scholar 

  132. Russo V, Tanzarella S, Dalerba P et al (2000) Dendritic cells acquire the MAGE-3 human tumor antigen from apoptotic cells and induce a class I-restricted T cell response. Proc Natl Acad Sci USA 97(5):2185-2190

    Article  PubMed  CAS  Google Scholar 

  133. Keogh E, Fikes J, Southwood S, Celis E, Chesnut R, Sette A (2001) Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity. J Immunol 167(2):787-796

    PubMed  CAS  Google Scholar 

  134. Schultz ES, Chapiro J, Lurquin C et al (2002) The production of a new MAGE-3 peptide presented to cytolytic T lymphocytes by HLA-B40 requires the immunoproteasome. J Exp Med 195(4):391-399

    Article  PubMed  CAS  Google Scholar 

  135. Gaugler B, Van den Eynde B, van der Bruggen P et al (1994) Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179(3):921-930

    Article  PubMed  CAS  Google Scholar 

  136. van der Bruggen P, Bastin J, Gajewski T et al (1994) A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24(12):3038-3043

    Article  PubMed  Google Scholar 

  137. Marchand M, van Baren N, Weynants P et al (1999) Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer 80(2):219-230

    Article  PubMed  CAS  Google Scholar 

  138. Atanackovic D, Altorki NK, Stockert E et al (2004) Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients. J Immunol 172:3289-3296

    PubMed  CAS  Google Scholar 

  139. Halmos BH (2006) Lung cancer II. ASCO Annu Meet Summ:156-160

    Google Scholar 

  140. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10(6):673-679

    Article  PubMed  CAS  Google Scholar 

  141. Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M (2000) Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA 97(9):4796-4801

    Article  PubMed  CAS  Google Scholar 

  142. Vonderheide RH, Anderson KS, Hahn WC, Butler MO, Schultze JL, Nadler LM (2001) Characterization of HLA-A3-restricted cytotoxic T lymphocytes reactive against the widely expressed tumor antigen telomerase. Clin Cancer Res 7(11):3343-3348

    PubMed  CAS  Google Scholar 

  143. Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S (2001) Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood 97(9):2903-2907

    Article  PubMed  CAS  Google Scholar 

  144. Hernandez J, Garcia-Pons F, Lone YC et al (2002) Identification of a human telomerase reverse transcriptase peptide of low affinity for HLA A2.1 that induces cytotoxic T lymphocytes and mediates lysis of tumor cells. Proc Natl Acad Sci USA 99(19):12275-12280

    Article  PubMed  CAS  Google Scholar 

  145. Scardino A, Gross DA, Alves P et al (2002) HER-2/neu and hTERT cryptic epitopes as novel targets for broad spectrum tumor immunotherapy. J Immunol 168(11):5900-5906

    PubMed  CAS  Google Scholar 

  146. Gross DA, Graff-Dubois S, Opolon P et al (2004) High vaccination efficiency of low-affinity epitopes in antitumor immunotherapy. J Clin Invest 113(3):425-433

    PubMed  CAS  Google Scholar 

  147. Schroers R, Huang XF, Hammer J, Zhang J, Chen SY (2002) Identification of HLA DR7-restricted epitopes from human telomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res 62(9):2600-2605

    PubMed  CAS  Google Scholar 

  148. Schroers R, Shen L, Rollins L et al (2003) Human telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes. Clin Cancer Res 9(13):4743-4755

    PubMed  CAS  Google Scholar 

  149. Uchida N, Otsuka T, Shigematsu H et al (1999) Differential gene expression of human telomerase-associated protein hTERT and TEP1 in human hematopoietic cells. Leuk Res 23(12):1127-1132

    Article  PubMed  CAS  Google Scholar 

  150. Tahara H, Yasui W, Tahara E et al (1999) Immuno-histochemical detection of human telomerase catalytic component, hTERT, in human colorectal tumor and non-tumor tissue sections. Oncogene 18(8):1561-1567

    Article  PubMed  CAS  Google Scholar 

  151. Shepherd F, Carney D (2000) Treatment of NSCLC: Chemotherapy. In: Textbook of lung cancer. Martin Dunitz, Hansen HH (ed.), London; pp. 213-242

    Google Scholar 

  152. Brunsvig PF, Aamdal S, Gjertsen MK et al (2006) Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer. Cancer Immunol Immunother 55(12):1553-1564

    Article  PubMed  CAS  Google Scholar 

  153. Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594-600

    Article  PubMed  CAS  Google Scholar 

  154. Théry C, Duban L, Sergura E et al (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156-1162

    Article  PubMed  CAS  Google Scholar 

  155. Théry C, Regnault A, Garin J et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599-610

    Article  PubMed  Google Scholar 

  156. Raposo G, Nijman H, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161-1172

    Article  PubMed  CAS  Google Scholar 

  157. Denzer K, van Eijk M, Kleijmeer MJ et al (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 165:1259-1265

    PubMed  CAS  Google Scholar 

  158. Hsu DH, Paz P, Villaflor G et al (2003) Exosomes as a tumor vaccine: enhancing potency through direct loading of antigenic peptides. J Immunother 26:440-450

    Article  PubMed  CAS  Google Scholar 

  159. Morse MA, Garst J, Osada T et al (2005) A phase I study of dexosome immunotherapy in patients with advanded non-small cell lung cancer. J Transl Med 3:9

    Article  PubMed  CAS  Google Scholar 

  160. Link CJ, Seregina T, Atchison R et al (1998) Eliciting hyperacute xenograft response to treat human cancer: a(1-3)galactosyltransferase gene therapy. Anticancer Res 18:2301-2308

    PubMed  CAS  Google Scholar 

  161. Morris JC, Vahanian N, Janik JE (2005) Phase I study of an antitumor vaccination using α(1,3)galactosyltransferase expressing allogeneic tumor cells in patients (Pts) with refractory or recurrent non-small cell lung cancer (NSCLC). J Clin Oncol, ASCO Annu Meet Proc 23(No. 16S, Part I of II (June 1 Suppl)):2586

    Google Scholar 

  162. Price ER, Zydowsky LD, Jin MJ, Baker CH, McKeon FD, Walsh CT (1991) Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc Natl Acad Sci USA 88(5):1903-1907

    Article  PubMed  CAS  Google Scholar 

  163. Bergsma DJ, Eder C, Gross M et al (1991) The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem 266(34):23204-23214

    PubMed  CAS  Google Scholar 

  164. Gomi S, Nakao M, Niiya F et al (1999) A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J Immunol 163(9):4994-5004

    PubMed  CAS  Google Scholar 

  165. Gohara R, Imai N, Rikimaru T et al (2002) Phase 1 clinical study of cyclophilin B peptide vaccine for patients with lung cancer. J Immunother 25(5):439-444

    Article  PubMed  CAS  Google Scholar 

  166. Brezicka FT, Olling S, Nilsson O et al (1989) Immunohistological detection of fucosyl-GM1 ganglioside in human lung cancer and normal tissues with monoclonal antibodies. Cancer Res 49(5):1300-1305

    PubMed  CAS  Google Scholar 

  167. Brezicka T, Bergman B, Olling S, Fredman P (2000) Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer 28(1):29-36

    Article  PubMed  CAS  Google Scholar 

  168. Vangsted AJ, Clausen H, Kjeldsen TB et al (1991) Immunochemical detection of a small cell lung cancer-associated ganglioside (FucGM1) antigen in serum. Cancer Res 51(11):2879-2884

    PubMed  CAS  Google Scholar 

  169. Dickler MN, Ragupathi G, Liu NX et al (1999) Immunogenicity of a fucosyl-GM1-keyhole limpet hemocyanin conjugate vaccine in patients with small cell lung cancer. Clin Cancer Res 5(10):2773-2779

    PubMed  CAS  Google Scholar 

  170. Krug LM, Ragupathi G, Hood C et al (2004) Vaccination of patients with small-cell lung cancer with synthetic fucosyl GM-1 conjugated to keyhole limpet hemocyanin. Clin Cancer Res 10(18 Pt 1):6094-6100

    Article  PubMed  CAS  Google Scholar 

  171. Graus F, Cordon-Cardo C, Houghton AN, Melamed MR, Old LJ (1984) Distribution of the ganglioside GD3 in the human nervous system detected by R24 mouse monoclonal antibody. Brain Res 324(1):190-194

    Article  PubMed  CAS  Google Scholar 

  172. Dippold WG, Dienes HP, Knuth A (1985) Meyer zum Buschenfelde KH. Immunohistochemical localization of ganglioside GD3 in human malignant melanoma, epithelial tumors, and normal tissues. Cancer Res 45(8):3699-3705

    PubMed  CAS  Google Scholar 

  173. Welte K, Miller G, Chapman PB et al (1987) Stimulation of T lymphocyte proliferation by monoclonal antibodies against GD3 ganglioside. J Immunol 139(6):1763-1771

    PubMed  CAS  Google Scholar 

  174. Fuentes R, Allman R, Mason MD (1997) Ganglioside expression in lung cancer cell lines. Lung Cancer 18(1):21-33

    Article  PubMed  CAS  Google Scholar 

  175. McCaffery M, Yao TJ, Williams L, Livingston PO, Houghton AN, Chapman PB (1996) Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: enhanced immunogenicity when combined with adjuvant. Clin Cancer Res 2(4):679-686

    PubMed  CAS  Google Scholar 

  176. Grant SC, Kris MG, Houghton AN, Chapman PB (1999) Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Calmette-Guerin. Clin Cancer Res 5(6):1319-1323

    PubMed  CAS  Google Scholar 

  177. Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cell Biochem 70(3):304-312

    Article  PubMed  CAS  Google Scholar 

  178. Finne J, Finne U, Deagostini-Bazin H, Goridis C (1983) Occurrence of alpha 2-8 linked polysialosyl units in a neural cell adhesion molecule. Biochem Biophys Res Commun 112(2):482-487

    Article  PubMed  CAS  Google Scholar 

  179. Rutishauser U, Landmesser L (1996) Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell-cell interactions. Trends Neurosci 19(10):422-427

    PubMed  CAS  Google Scholar 

  180. Daniel L, Trouillas J, Renaud W et al (2000) Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res 60(1):80-85

    PubMed  CAS  Google Scholar 

  181. Komminoth P, Roth J, Lackie PM, Bitter-Suermann D, Heitz PU (1991) Polysialic acid of the neural cell adhesion molecule distinguishes small cell lung carcinoma from carcinoids. Am J Pathol 139(2):297-304

    PubMed  CAS  Google Scholar 

  182. Lantuejoul S, Moro D, Michalides RJ, Brambilla C, Brambilla E (1998) Neural cell adhesion molecules (NCAM) and NCAM-PSA expression in neuroendocrine lung tumors. Am J Surg Pathol 22(10):1267-1276

    Article  PubMed  CAS  Google Scholar 

  183. Zhang S, Cordon-Cardo C, Zhang HS et al (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides. Int J Cancer 73(1):42-49

    Article  PubMed  CAS  Google Scholar 

  184. Krug LM, Ragupathi G, Ng KK et al (2004) Vaccination of small cell lung cancer patients with polysialic acid or N-propionylated polysialic acid conjugated to keyhole limpet hemocyanin. Clin Cancer Res 10(3):916-923

    Article  PubMed  CAS  Google Scholar 

  185. Jennings HJ, Roy R, Gamian A (1986) Induction of meningococcal group B polysaccharide-specific IgG antibodies in mice by using an N-propionylated B polysaccharide-tetanus toxoid conjugate vaccine. J Immunol 137(5):1708-1713

    PubMed  CAS  Google Scholar 

  186. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3rd (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 257(5070):674-678

    Article  PubMed  CAS  Google Scholar 

  187. Goodyer P, Dehbi M, Torban E, Bruening W, Pelletier J (1995) Repression of the retinoic acid receptor-alpha gene by the Wilms’ tumor suppressor gene product, wt1. Oncogene 10(6):1125-1129

    PubMed  CAS  Google Scholar 

  188. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ 3rd, Saunders GF (1995) Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res 55(22):5386-5389

    PubMed  CAS  Google Scholar 

  189. Oji Y, Miyoshi S, Maeda H et al (2002) Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int J Cancer 100(3):297-303

    Article  PubMed  CAS  Google Scholar 

  190. Miyoshi Y, Ando A, Egawa C et al (2002) High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 8(5):1167-1171

    PubMed  CAS  Google Scholar 

  191. Oka Y, Elisseeva OA, Tsuboi A et al (2000) Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics 51(2):99-107

    Article  PubMed  CAS  Google Scholar 

  192. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95(1):286-293

    PubMed  CAS  Google Scholar 

  193. Oka Y, Tsuboi A, Taguchi T et al (2004) Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101(38):13885-13890

    Article  PubMed  CAS  Google Scholar 

  194. Nemunaitis J, Dillman RO, Schwarzenberger PO et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24(29):4721-4730.

    Article  PubMed  CAS  Google Scholar 

  195. Nemunaitis J, Nemunaitis J (2003) Granulocyte-macrophage colony-stimulating factor gene-transfected autologous tumor cell vaccine: focus[correction to fcous] on non-small-cell lung cancer. Clin Lung Cancer 5(3):148-157

    Article  PubMed  CAS  Google Scholar 

  196. Antonia SJ, Mirza N, Fricke I et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12(3 Pt 1):878-887

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nemunaitis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nemunaitis, J., Roth, J. (2010). Vaccine Therapy for Lung Cancer. In: Stewart, D. (eds) Lung Cancer. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-524-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-524-8_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-523-1

  • Online ISBN: 978-1-60761-524-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics