Skip to main content

Why Study Mouse Retroviruses?

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 711 Accesses

Abstract

Retroviruses are a unique group of viruses that insert their genetic material into the host genome and cause a variety of diseases ranging from AIDS in humans infected with human immunodeficiency virus (HIV) to leukemia in humans infected with human T cell lymphotropic virus-1 (HTLV-1). Before retroviruses were discovered in humans, they had been studied for many years in mice and other species, mainly because of their interesting ability to cause cancer. As an immunologist, I became interested in studying mouse retroviruses because of intriguing work by Bruce Chesebro who showed that numerous immunological host genes controlled the ability of mouse retroviruses to cause disease [1]. While the immune systems of mice and humans are not identical, they are remarkably similar, and discoveries in mouse models have led to the development of diverse medical advances such as successful transplantation surgery, cancer therapies, antiviral drugs, and vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chesebro B, Miyazawa M, & Britt WJ (1990). Host genetic control of spontaneous and induced immunity to Friend murine retrovirus infection, Annu Rev Immunol, 8, 477–499

    Article  PubMed  CAS  Google Scholar 

  2. Carrington M, Nelson G W, Martin M P & et al (1999). HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage, Science, 283, 1748–1752

    Article  PubMed  CAS  Google Scholar 

  3. Hendel H, Caillat-Zucman S, Lebuanec H & et al (1999). New class I and II HLA a leles strongly associated with opposite patterns of progression to AIDS, J Immunol, 162, 6942–6946

    PubMed  CAS  Google Scholar 

  4. KaslowR A, Carrington M, Apple R, & et al (1996). Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection, Nat Med, 2, 405–411

    Article  PubMed  CAS  Google Scholar 

  5. Yamano Y, Cohen C J, Takenouchi N & et al (2004). Increased expression of human T lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+ CD25+ T Cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease, J Exp Med, 199, 1367–1377

    Article  PubMed  CAS  Google Scholar 

  6. Shohat B, Achiron A, Narinski R, & et al (1996). Possible HLA association with susceptibility to HTLV-1 tropical spastic paraparesis in Israel in Iranian Jews as compared to HTLV 1-associated my lopathy in Japan, Tissue Antigens, 48, 136–138

    Article  PubMed  CAS  Google Scholar 

  7. Catalan-Soares B C, Carneiro-Proietti A B, Da Fonseca F G & et al (2008). HLA class I alleles in HTLV-1-associated myelopathy and asymptomatic carriers from the Brazilian cohort GIPH, Med M crobiol Immunol,(pages numbers?)

    Google Scholar 

  8. Friend C (1957). Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia, J Exp Med, 105, 307–318

    Article  PubMed  CAS  Google Scholar 

  9. Chesebro B, Wehrly K, Doig D & et al (1979). Antibody-induced modulation of Friend virus cell surface antigens decreases virus production by persistent erythroleukemia cells: influence of the Rfv-3 gene, Proc Natl Acad Sci USA, 76, 5784–5788

    Article  PubMed  CAS  Google Scholar 

  10. Chesebro B & Wehrly K (1979). Identification of a non-H-2 gene (Rfv-3) influencing recovery from viremia and leukemia induced by Friend virus complex, Proc Natl Acad Sci USA, 76, 425–429

    Article  PubMed  CAS  Google Scholar 

  11. Doig D & Chesebro B (1979). Anti-Friend virus antibody is associated with recovery from viremia and loss of viral leukemia cell-surface antigens in leukemic mice. Identification of Rfv-3 as a gene locus influencing antibody production, J Exp Med, 150, 10–19

    Article  PubMed  CAS  Google Scholar 

  12. Hasenkrug K J, Valenzuela A, Letts V A & et al (YEAR?) Chromosome mapping of Rfv3, a host resistance gene to Friend murine retrovirus, J Virol, 69, 2617–2620

    Google Scholar 

  13. Super H J, Hasenkrug K J, Simmons S, & et al (1999). Fine mapping of the friend retrovirus resistance gene, Rfv3, on mouse chromosome 15, J Virol, 73, 7848–7852

    PubMed  CAS  Google Scholar 

  14. KanariY, Clerici M, Abe H & et al (2005). Genotypes at chromosome 22q12-13 are associated with HIV-1-exposed but uninfected status in Italians, AIDS, 19, 1015–1024

    Article  PubMed  CAS  Google Scholar 

  15. Santiago M L, Montano M, Benitez R & et al (2008). Apobec3 encodes Rfv3, a gene influencing neutralizing antibody control of retrovirus infection, Science, 321, 1343–1346

    Article  PubMed  CAS  Google Scholar 

  16. Hasenkrug K J, Brooks D M & Chesebro B (1995). Passive immunotherapy for retroviral disease: influence of major histocompatibility complex type and T-cell responsiveness, Proc Natl Acad Sci USA, 92, 10492–10495

    Article  PubMed  CAS  Google Scholar 

  17. Messer R J, Dittmer U, Peterson K E & et al (2004). Essential role for virus-neutralizing antibodies in sterilizing immunity against Friend retrovirus infection, Proc Natl Acad Sci USA, 101, 12260–12265

    Article  PubMed  CAS  Google Scholar 

  18. Hasenkrug K J (1999). Lymphocyte deficiencies increase susceptibility to Friend virus-induced erythroleukemia in Fv-2 genetically resistant mice, J Virol, 73, 6468–6473

    PubMed  CAS  Google Scholar 

  19. Robertson M N, Spangrude G J, Hasenkrug K & et al (1992). Role and specificity of T-cell subsets in spontaneous recovery from Friend virus-induced leukemia in mice, J Virol, 66, 3271–3277

    PubMed  CAS  Google Scholar 

  20. Chesebro B, Bloom M, Wehrly K & Nishio J (1979). Persistence of infectious Friend virus in spleens of mice after spontaneous recovery from virus induced erythroleukemia, J Virol, 32, 832–837

    PubMed  CAS  Google Scholar 

  21. Hasenkrug K J, Brooks D M & Dittmer U (1998). Critical role for CD4+ T cells in controlling retrovirus replication and spread in persistently infected mice, J Virol, 72, 6559–6564

    PubMed  CAS  Google Scholar 

  22. Iwashiro M, Peterson K, Messer R J & et al (2001). CD4(+) T cells and gamma interferon in the long-term control of persistent friend retrovirus infection, J Virol, 75, 52–60

    Article  PubMed  CAS  Google Scholar 

  23. Stromnes I M, Dittmer U, Schumacher T N & et al (2002). Temporal effects of gamma interferon deficiency on the course of Friend retrovirus infection in mice, J Virol, 76, 2225–2232

    Article  PubMed  CAS  Google Scholar 

  24. Zelinskyy G, Robertson S J, Schimmer S & et al (2005). CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection, J Virol, 79, 10619–10626

    Article  PubMed  CAS  Google Scholar 

  25. Iwashiro M, Messer R J, Peterson K E & et al (2001). Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection, Proc Natl Acad Sci USA, 98, 9226–9230

    Article  PubMed  CAS  Google Scholar 

  26. Sakaguchi S (2000). Regulatory T cells: key controllers of immunologic selftolerance, Cell, 101, 455–458

    Article  PubMed  CAS  Google Scholar 

  27. Robertson S J, Messer R J, Carmody A B & et al (2006). In Vitro Suppression of CD8+ T cell function by Friend virus-induced regulatory T cells, J Immunol, 176, 3342–3349

    PubMed  CAS  Google Scholar 

  28. Kinter A L, Hennessey M, Bell A, & et al (2004). CD25(+)CD4(+) regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status, J Exp Med, 200, 331–343

    Article  PubMed  CAS  Google Scholar 

  29. Kinter A, McNally J, Riggin L & et al (2007). Suppression HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals, Proc Natl Acad Sci USA, 104, 3390–3395

    Article  PubMed  CAS  Google Scholar 

  30. Kinter A L, Horak R, Sion M & et al (2007). CD25+ regulatory T cells isolated from HIV-infected individuals suppress the cytolytic and nonlytic antiviral activity of HIV-specific CD8+ T cells in vitro, AIDS Res Hum Retroviruses, 23, 438–450

    Article  PubMed  CAS  Google Scholar 

  31. Shimizu J, Yamazaki S, Takahashi T & et al (2002). Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance, Nat Immunol, 3, 135–142

    Article  PubMed  CAS  Google Scholar 

  32. Ji H B, Liao G, Faubion W A & et al (2004). Cutting edge: the natural ligand for glucocorticoidinduced TNF receptor-related protein abrogates regulatory T cell suppression, (2004) J Immunol, 172, 5823–5827

    PubMed  CAS  Google Scholar 

  33. Ronchetti S, Zollo O, Bruscoli S & et al (2004). GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations, Eur J Immunol, 34, 613–622

    Article  PubMed  CAS  Google Scholar 

  34. Shevach E M & Stephens G L (2006). The GITR-GITRL interaction: costimulation or contrasuppression of regulatory activity? Nat Rev Immunol, 6, 613–618

    Article  PubMed  CAS  Google Scholar 

  35. He H, Messer R J, Sakaguchi S & et al (2004). Reduction of retrovirus-induced immunosuppression by in vivo modulation of T cells during acute infection, J Virol, 78, 11641–11647

    Article  PubMed  CAS  Google Scholar 

  36. Robertson S J, Messer R J, Carmody A B & et al (2008). CD137 Costimulation of CD8+ T cells confers resistance to suppression by virus-induced regulatory T cells, J Immunol, 180, 5267–5274

    PubMed  CAS  Google Scholar 

  37. Koff W C, Johnson P R, Watkins D I & et al (2006). HIV vaccine design: insights from live attenuated SIV vaccines, Nat Immunol, 7, 19–23

    Article  PubMed  CAS  Google Scholar 

  38. Dittmer U, Brooks D M & Hasenkrug K J (1999). Requirement for multiple lymphocyte subsets in protection against retroviral infection by a live attenuated vaccine, Nat Med, 5, 189–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hasenkrug, K.J. (2010). Why Study Mouse Retroviruses?. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics