Skip to main content

pO2 and ROS/RNS Measurements in the Microcirculation in Hypoxia

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress II

Part of the book series: Methods in Molecular Biology ((MIMB,volume 594))

Abstract

We expose methods for in vivo assessment of oxygen, nitric oxide (NO), and reactive oxygen species (ROS)/reactive nitrogen species (RNS), in the microcirculation during normoxia and hypoxia. We provide an example of the related mechanisms of ROS/RNS and oxygen level in the process of regulating capillary perfusion. Namely, we discuss the real time pO2 measurements in vivo in the microvessels and tissues of the hamster cheek pouch and window chamber preparations during normoxia and hypoxia, as well as the corresponding changes in ROS/RNS in systemic blood during normoxia and hypoxia under conditions where NO availability is maximally reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haliwell B, Gutteridge JMC (1999) Free radical in Biology and Medicine. Oxford University Press, London

    Google Scholar 

  2. Dröge W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Google Scholar 

  3. Halliwell B, Gutteridge JMC (1985) The chemistry of oxygen radicals and other oxygen-derived species. In: Free radicals in biology and medicine. Oxford University Press, New York, pp 20–64

    Google Scholar 

  4. Barreto JC, Smith GS, Stobel NHP, McQuillin PA, Miller TA (1995) Teraphtalic acid: a dosimeter for detection of hydroxyl radical in vitro. Life Sci 56:89–96

    Google Scholar 

  5. Parker L (ed) (1994) Oxygen radicals in biological systems. In: Methods in Enzymology, vol 234, part D. Academic, New York

    Google Scholar 

  6. Ignarro LJ (2002) Nitric oxide is an unique signaling molecule in the vascular system: a historical overview. J Physiol Pharmacol 53:503–514

    PubMed  CAS  Google Scholar 

  7. Buerk DG (2007) Nitric oxide regulation of microvascular oxygen. Antioxid Redox Signal 9:829–843

    Article  PubMed  CAS  Google Scholar 

  8. Abu-Soud HM, Rousseau DL, Stuehr DJ (1966) Nitric oxide binding to the heme of neuronal nitric-oxide synthase links its activity to changes in oxygen tension. J Biol Chem 271:32515–32518

    Google Scholar 

  9. Bertuglia S, Giusti A (2005) The role of nitric oxide in capillary perfusion and oxygen delivery regulation during systemic hypoxia. Am J Physiol Heart Circ Physiol 288(2):H525–531

    Article  PubMed  CAS  Google Scholar 

  10. Shen W, Xu X, Ochoa M, Zhao G, Wolin MS, Hintze TH (1994) Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. Circ Res 75:1086–1095

    Article  PubMed  CAS  Google Scholar 

  11. King CE, Melinyshyin MJ, Mewburn JD, Curtis SE, Winn MJ, Cain SM, Chapler CK (1994) Canine hindlimb flow and O2 uptake after inhibition of EDRF/NO synthesis. J Appl Physiol 76:1166–1171

    PubMed  CAS  Google Scholar 

  12. Cabrales P, Tsai AG, Intaglietta M (2006) Nitric oxide regulation of microvascular oxygen exchange during hypoxia and hyperoxia. J Appl Physiol 100:1181–1187

    Article  PubMed  CAS  Google Scholar 

  13. Stamler JS (1995) S-nitrosothiols and the bioregulatory actions of nitrogen oxides through reactions with thiol groups. Curr Top Microbiol Immunol 196:19–36

    Article  PubMed  CAS  Google Scholar 

  14. Jia L, Bonaventura C, Bonaventura J, Stamler JS (1996) S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380:221–226

    Article  PubMed  CAS  Google Scholar 

  15. Intaglietta M, Johnson PC, Winslow RM (1996) Microvascular and tissue oxygen distribution. Cardiovasc Res 32:632–643

    PubMed  CAS  Google Scholar 

  16. Hogan MC (1999) Phosphorescence quenching method for measurement of intracellular pO2 in isolated skeletal muscle fibers. J Appl Physiol 86:720–724

    PubMed  CAS  Google Scholar 

  17. Kessler M, Harrison, DK, Hoper J (1986) Tissue oxygen measurement techniques. In: Baker CH, Nastuk WL, Orlando FL (eds) Microcirculatory technology. Academic, New York, pp. 391–425

    Google Scholar 

  18. Popel AS, Pittman RN, Ellsworth ML (1989) Rate of oxygen loss from arterioles is an order of magnitude higher than expected. Am J Physiol 256:H921–H924

    PubMed  CAS  Google Scholar 

  19. Tsai AG, Johnson PC, Intaglietta M (2003) Oxygen gradients in the microcirculation. Physiol Rev 83:933–963

    PubMed  CAS  Google Scholar 

  20. Kerger H, Saltzman DJ, Gonzales A, Tsai AG, van Ackern K, Winslow RM, Intaglietta M (1997) Microvascular oxygen delivery and interstitial oxygenation during sodium pentobarbital anesthesia. Anesthesiology 86:372–386

    Article  PubMed  CAS  Google Scholar 

  21. Pawlowski M, Wilson DF (1992) Monitoring of the oxygen pressure in the blood of live animals using the oxygen dependent quenching of phosphorescence. Adv Exp Med Biol 316:179–185

    Article  PubMed  CAS  Google Scholar 

  22. Sinaasappel M, van Iterson M, Ince C (1992) Microvascular oxygen pressure in the pig intestine during hemorrhagic shock and resuscitation. J Physiol (Lond) 514:245–253

    Article  Google Scholar 

  23. Tsai AG, Friesenecker B, Mazzoni MC, Kerger H, Buerk DG, Johnson PC, Intaglietta M (1988) Microvascular and tissue oxygen gradients in the rat mesentery. Proc Natl Acad Sci USA 95:6590–6595

    Article  Google Scholar 

  24. Wilson DF (1993) Measuring oxygen using oxygen dependent quenching of phosphorescence: a status report. Adv Exp Med Biol 333:225–232

    PubMed  CAS  Google Scholar 

  25. Seylaz E, Pinard J (1977) Continuous intra-cerebral PO2 and PCO2 measurements by mass spectrometry: study of the influence of vasoactive drugs. Acta Neurol Scand 64:438–439

    CAS  Google Scholar 

  26. Grisham MB (1994) Oxidants and free radicals in inflammatory bowel disease. Lancet 344:859–861

    Article  PubMed  CAS  Google Scholar 

  27. Pryor WA, Stanley JP, Blair E (1976) Autoxidation of polyunsaturated fatty acids: II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids 11:370–379

    Article  PubMed  CAS  Google Scholar 

  28. Bertuglia S, Reiter NJ (2007) Melatonin reduces ventricular arrhythmias and preserves capillary perfusion during ischemia-reperfusion events in cardiomyopathic hamsters. J Pineal Res 42(1):55–63

    Article  PubMed  CAS  Google Scholar 

  29. Salvemini D, Mazzon E, Dugo L, Serraino I, De Sarro A, Caputi AP, Cuzzocrea S (2001) Amelioration of joint disage in a rat model of collagen-induced arthritis in M40403, a superoxide dismutase mimetic. Arthritis Rheum 44:2909–2291

    Article  PubMed  CAS  Google Scholar 

  30. Szabo A, Hake P, Salzman AL, Szabo C (1999) Beneficial effects of mercaptothylguanidine, an inhibitor of the inducible isoform of NO synthase and a scavenger of peroxinitrite in a porcine model of delayed hemorrhagic shock. Crit Care Med 27:1343–1359

    Article  PubMed  CAS  Google Scholar 

  31. Halliwell B, Gutteridge JMC (2000) Detection of free radicals and other reactive species: trapping and finger printing. In: Halliwell B, Gutteridge JMC (eds) Free Radicals in Biology and Medicine. Oxford University Press, Oxford, pp 351–429

    Google Scholar 

  32. Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci USA 87:9383–9387

    Article  PubMed  CAS  Google Scholar 

  33. Wink DA, Kim S, Coffin D, Cook JC, Vodovotz Y, Chistodoulou D, Jourd’heuil D, Grisham MB (1999) Detection of S-nitrosothiols by fluorometric and colorimetric methods. Methods Enzymol 301:201–211

    Article  PubMed  CAS  Google Scholar 

  34. Karlsson J (1997) Introduction to nutraology and radical formation. In: Antioxidants and exercise. Human Kinetics Press, Illinois, pp 1–143

    Google Scholar 

  35. Baker JE, Froncisz W, Joseph J, Kalyanaraman B (1997) Spin label oximetry to assess extracellular oxygen during myocardial ischemia. Free Radic Biol Med 22:109–115

    Article  PubMed  CAS  Google Scholar 

  36. Velan SS, Spencer RG, Zweier JL, Kuppusamy P (2000) Electron paramagnetic resonance oxygen mapping (EPROM): direct visualization of oxygen concentration in tissue. Magn Reson Med 43:804–809

    Article  PubMed  CAS  Google Scholar 

  37. Acworth IN, Bailey B (1997) Reactive oxygen species. In: The handbook of oxidative metabolism. ESA, Northampton, MA, pp 1–4.

    Google Scholar 

  38. Bertuglia S, Colantuoni A, Coppini G, Intaglietta M (1991) Hypoxia- or hyperoxia-induced changes in arteriolar vasomotion in skeletal muscle microcirculation. Am J Physiol 260:H362–H372

    PubMed  CAS  Google Scholar 

  39. Bertuglia S, Giusti A, Del Soldato P (2004) Antioxidant activity of a nitro derivative of aspirin against ischemia reperfusion in hamster cheek pouch microcirculation. Am. J. Physiol. Gastrointestinal-Liver Physiol. 286(3):G437–G443

    Article  CAS  Google Scholar 

  40. Bertuglia S, Giusti A (2003) Microvascular oxygenation, oxidative stress, nitric oxide suppression and superoxide dismutase during postischemic reperfusion. Am J Physiol 285:H1064–H1071

    CAS  Google Scholar 

  41. Cabrales P, Tsai AG, Intaglietta M (2004) Increased tissue PO2 and decreased O2 delivery and consumption after 80% exchange transfusionwith polymerized hemoglobin. Am J Physiol Heart Circ Physiol 287:H2825–H2833

    Article  PubMed  CAS  Google Scholar 

  42. Friesenecker B, Tsai AG, Dunser MW, Mayr AJ, Martini J, Knotzer H, Hasibeder W, Intaglietta M (2004) Oxygen distribution in the microcirculation following arginine vasopressin-induced arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol 287:H1792–H1800

    Article  PubMed  CAS  Google Scholar 

  43. Torres Filho IP, Intaglietta M (1993) Microvessel PO2 measurement by phosphorence decay method. Am J Physiol Heart Circ Physiol 265:H1537–H1545

    Google Scholar 

  44. Kerger H, Groth G, Kalenka A, Vajkoczy P, Tsai AG, Intaglietta M (2003) PO2 measurements by phoroshorence quenching characteristics and applications of an automated system. Microvasc Res 15:93–101

    Google Scholar 

  45. Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628

    Article  PubMed  CAS  Google Scholar 

  46. Cabrales P, Tsai AG, Intaglietta M (2004) Microvascular pressure and functional capillary density in extreme hemodilution with low and high plasma viscosity expanders. Am J Physiol Heart Circ Physiol 287:H363–H373

    Article  PubMed  CAS  Google Scholar 

  47. Tsai AG, Acero C, Nance PR, Frangos JA, Buerk DG, Intaglietta M (2005) Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion. Am J Physiol Heart Circ Physiol 288:H1730–H1739

    Article  PubMed  CAS  Google Scholar 

  48. Sarelius IH (1968) Cell flow path influences transit time through striated muscle capillaries. Am J Physiol Heart Circ Physiol 250:H899–H907

    Google Scholar 

  49. Bohlen HG, Nase GP (2000) Dependence of intestinal arteriolar regulation on flow-mediated nitric oxide formation. Am J Physiol Heart Circ Physiol 279:H2249–H2258

    PubMed  CAS  Google Scholar 

  50. Grishman MB, Jonshon GG, Lancaster JR (1966) Quantitation of nitrite and nitrate in extracellular fluids. Methods Enzymol 268:237–246

    Article  Google Scholar 

  51. Golub AS, Barker MG, Pittman RN (2007) PO2 profiles near arterioles and tissue oxygen consumption in rat mesentery. Am J Physiol Heart Circ Physiol 293:H1097–H1106

    Article  PubMed  CAS  Google Scholar 

  52. Golub AS, Pittman RN (2008) PO2 measurements in the microcirculation using phosphorescence quenching microscopy at high magnification. Am J Physiol Heart Circ Physiol 294:H2095–H2916

    Google Scholar 

  53. Shibata M, Ichioka S, Ando J, Kamiya A (2001) Microvascular and interstitial PO2 measurements in rat skeletal muscle by phosphorence quenching. J Appl Physiol 91:321–327

    PubMed  CAS  Google Scholar 

  54. Tarpey MM, Wink DA, Grishman MB (2008) Methods for detection of reactive metabolites of oxygen and nitrose: in vitro and in vivo considerations. Am J Physiol Regul Integr Comp Physiol 206:R431–R444

    Google Scholar 

  55. Halliwell B (1995) How to characterize an antioxidant: an update. Biochem Soc Symp 61:73–101

    PubMed  CAS  Google Scholar 

  56. Rice-Evans CA, Diplock AT (1993) Current status of antioxidant therapy. Free Radic Biol Med 15:77–96

    Article  PubMed  CAS  Google Scholar 

  57. Skulachev VP (1997) Membrane-linked systems preventing superoxide formation. Biosci Rep. 17:347–366.

    Google Scholar 

  58. Prewitt RL, Johnson PC (1976) The effect of oxygen on arteriolar red cell velocity and capillary density in the rat cremaster muscle. Microvasc Res 12:59–70

    Article  PubMed  CAS  Google Scholar 

  59. Edmunds NJ, Marshall JM (2003) The roles of nitric oxide in dilating proximal and terminal arterioles of skeletal muscle during systemic hypoxia. J Vasc Res 40:68–76

    Article  PubMed  CAS  Google Scholar 

  60. Hangai-Hoger N, Tsai AG, Friesenecker B, Cabrales P, Intaglietta M (2005) Microvascular oxygen delivery and consumption following treatment with verapamil. Am J Physiol Heart Circ Physiol 288:H1515–H1520

    Article  PubMed  CAS  Google Scholar 

  61. Akaike T, Yoshida M, Miyamoto Y (1993) Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing facto/NO through a radical reaction. Biochemistry 32:827–832

    Article  PubMed  CAS  Google Scholar 

  62. Christie MI, Griffith TM, Lewis MJ (1989) A comparison of basal and agonist-stimulated release of endothelium-derived relaxing factor from different arteries. Br J Pharmacol 98:397–406

    Article  PubMed  CAS  Google Scholar 

  63. Coste J, Vial JC, faury G, Deronzier A, Usson Y, Nicoud MR, Verdetti J (2002) NO synthesis, unlike respiration, influences intracellular oxygen tension. Biochem Biophys Res Comm 209:97–104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bertuglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bertuglia, S., Intaglietta, M. (2010). pO2 and ROS/RNS Measurements in the Microcirculation in Hypoxia. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress II. Methods in Molecular Biology, vol 594. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-411-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-411-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-410-4

  • Online ISBN: 978-1-60761-411-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics