Skip to main content

Mechanisms of G2 Phase Arrest in DNA Damage-Induced Checkpoint Response

  • Chapter
  • First Online:
Checkpoint Controls and Targets in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

DNA damage activates cell cycle checkpoints and inhibits cell cycle progression. In G2 phase cells, the checkpoint response results in the inhibition of Cdc2/cyclin B activity, which, thereby, prevents G2/M transition, and, as a result, cells accumulate at the G2/M boundary. Both p53-depen-dent and -independent mechanisms are involved in the inhibition of Cdc2 kinase activity during the DNA damage-induced G2 phase checkpoint response. The p53-independent mechanism causes an acute but transient inhibition of the Cdc2/cyclin B activity through posttranslational modifications of the Cdc2-activating phosphatase Cdc25, whereas the p53-dependent mechanism causes a delayed but sustained inhibition of the Cdc2/cyclin B activity through both transactivation of p21, GADD45 and 14-3-3 and tran-srepression of Cdc2 and cyclin B. Because the p53-dependent mechanism is often defective in tumor cells, abrogation of the p53-independent mechanism to preferentially negate the G2 checkpoint response and induce programmed cell death in tumor cells has become an attractive adjuvant strategy in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson HJ, Andersen RJ, Roberge M (2003) Inhibitors of the G2 DNA damage checkpoint and their potential for cancer therapy. Prog Cell Cycle Res 5:423–430

    PubMed  Google Scholar 

  2. O’Connor PM, Fan S (1996) DNA damage checkpoints: implications for cancer therapy. Prog Cell Cycle Res 2:165–173

    PubMed  Google Scholar 

  3. Seibert EOR, Ross JBA (2005) Dynamics of DNA damage recognition. In: Siede WKY, Doetsch PW (eds) DNA damage recognition. Taylor and Francis, New York, pp 3–19

    Google Scholar 

  4. Jackson SP (1996) The recognition of DNA damage. Curr Opin Genet Dev 6:19–25

    CAS  PubMed  Google Scholar 

  5. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    CAS  PubMed  Google Scholar 

  6. Nurse P (1997) Checkpoint pathways come of age. Cell 91:865–867

    CAS  PubMed  Google Scholar 

  7. Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    CAS  PubMed  Google Scholar 

  8. Agami R, Bernards R (2000) Distinct initiation and maintenance mechanisms cooperate to induce G1 cell cycle arrest in response to DNA damage. Cell 102:55–66

    CAS  PubMed  Google Scholar 

  9. Datta R, Hass R, Gunji H, Weichselbaum R, Kufe D (1992) Down-regulation of cell cycle control genes by ionizing radiation. Cell Growth Differ 3:637–644

    CAS  PubMed  Google Scholar 

  10. Miyakawa Y, Matsushime H (2001) Rapid downregulation of cyclin D1 mRNA and protein levels by ultraviolet irradiation in murine macrophage cells. Biochem Biophys Res Commun 284:71–76

    CAS  PubMed  Google Scholar 

  11. Muschel RJ, Zhang HB, Iliakis G, McKenna WG (1991) Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. Cancer Res 51:5113–5117

    CAS  PubMed  Google Scholar 

  12. Muschel RJ, Zhang HB, Iliakis G, McKenna WG (1992) Effects of ionizing radiation on cyclin expression in HeLa cells. Radiat Res 132:153–157

    CAS  PubMed  Google Scholar 

  13. Poon RY, Jiang W, Toyoshima H, Hunter T (1996) Cyclin-dependent kinases are inactivated by a combination of p21 and Thr-14/Tyr-15 phosphorylation after UV-induced DNA damage. J Biol Chem 271:13283–13291

    CAS  PubMed  Google Scholar 

  14. Zhan Q, Antinore MJ, Wang XW et al (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900

    CAS  PubMed  Google Scholar 

  15. Rhind N, Furnari B, Russell P (1997) Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev 11:504–511

    CAS  PubMed  Google Scholar 

  16. Blasina A, Paegle ES, McGowan CH (1997) The role of inhibitory phosphorylation of CDC2 following DNA replication block and radiation-induced damage in human cells. Mol Biol Cell 8:1013–1023

    CAS  PubMed  Google Scholar 

  17. Ye XS, Fincher RR, Tang A, Osmani SA (1997) The G2/M DNA damage checkpoint inhibits mitosis through Tyr15 phosphorylation of p34cdc2 in Aspergillus nidulans. Embo J 16:182–192

    CAS  PubMed  Google Scholar 

  18. Jin P, Gu Y, Morgan DO (1996) Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134:963–970

    CAS  PubMed  Google Scholar 

  19. Terada Y, Tatsuka M, Jinno S, Okayama H (1995) Requirement for tyrosine phosphorylation of Cdk4 in G1 arrest induced by ultraviolet irradiation. Nature 376:358–362

    CAS  PubMed  Google Scholar 

  20. Dulic V, Kaufmann WK, Wilson SJ et al (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023

    CAS  PubMed  Google Scholar 

  21. Bunz F, Dutriaux A, Lengauer C et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    CAS  PubMed  Google Scholar 

  22. Smits VA, Klompmaker R, Vallenius T, Rijksen G, Makela TP, Medema RH (2000) p21 inhibits Thr161 phosphorylation of Cdc2 to enforce the G2 DNA damage checkpoint. J Biol Chem 275:30638–30643

    CAS  PubMed  Google Scholar 

  23. el-Deiry WS, Harper JW, O’Connor PM et al (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  PubMed  Google Scholar 

  24. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704

    CAS  PubMed  Google Scholar 

  25. Takizawa CG, Morgan DO (2000) Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12:658–665

    CAS  PubMed  Google Scholar 

  26. Pines J (1999) Four-dimensional control of the cell cycle. Nat Cell Biol 1:E73–E79

    CAS  PubMed  Google Scholar 

  27. Walworth NC (2000) Cell-cycle checkpoint kinases: checking in on the cell cycle. Curr Opin Cell Biol 12:697–704

    CAS  PubMed  Google Scholar 

  28. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. Faseb J 10:238–247

    CAS  PubMed  Google Scholar 

  29. Lowndes NF, Murguia JR (2000) Sensing and responding to DNA damage. Curr Opin Genet Dev 10:17–25

    CAS  PubMed  Google Scholar 

  30. O’Connor PM (1997) Mammalian G1 and G2 phase checkpoints. Cancer Surv 29:151–182

    PubMed  Google Scholar 

  31. Lavin MF (1998) Radiosensitivity and oxidative signalling in ataxia telangiectasia: an update. Radiother Oncol 47:113–123

    CAS  PubMed  Google Scholar 

  32. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    CAS  PubMed  Google Scholar 

  33. Bentley NJ, Carr AM (1997) DNA structure-dependent checkpoints in model systems. Biol Chem 378:1267–1274

    CAS  PubMed  Google Scholar 

  34. Lukas C, Sorensen CS, Kramer E et al (1999) Accumulation of cyclin B1 requires E2F and cyclin-A-dependent rearrangement of the anaphase-promoting complex. Nature 401:815–818

    CAS  PubMed  Google Scholar 

  35. Peters JM (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7:644–656

    CAS  PubMed  Google Scholar 

  36. Fang G, Yu H, Kirschner MW (1999) Control of mitotic transitions by the anaphase-promoting complex. Philos Trans R Soc Lond B Biol Sci 354:1583–1590

    CAS  PubMed  Google Scholar 

  37. Poon RY, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J (1993) The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. Embo J 12:3123–3132

    CAS  PubMed  Google Scholar 

  38. Solomon MJ (1994) The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem Sci 19:496–500

    CAS  PubMed  Google Scholar 

  39. Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2 protein kinase regulates entry into mitosis. Nature 342:39–45

    CAS  PubMed  Google Scholar 

  40. Heald R, McLoughlin M, McKeon F (1993) Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74:463–474

    CAS  PubMed  Google Scholar 

  41. Guadagno TM, Newport J (1996) Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell 84:73–82

    CAS  PubMed  Google Scholar 

  42. Hu B, Mitra J, van den Heuvel S, Enders GH (2001) S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells. Mol Cell Biol 21:2755–2766

    CAS  PubMed  Google Scholar 

  43. Lorca T, Labbe JC, Devault A et al (1992) Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. EMBO J 11:2381–2390

    CAS  PubMed  Google Scholar 

  44. Poon RY, Hunter T (1995) Dephosphorylation of Cdk2 Thr160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science 270:90–93

    CAS  PubMed  Google Scholar 

  45. Hutchins JR, Clarke PR (2004) Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase. Cell Cycle 3:41–45

    CAS  PubMed  Google Scholar 

  46. Perdiguero E, Nebreda AR (2004) Regulation of Cdc25C activity during the meiotic G2/M transition. Cell Cycle 3:733–737

    CAS  PubMed  Google Scholar 

  47. Perry JA, Kornbluth S (2007) Cdc25 and Wee1: analogous opposites? Cell Div 2:12

    PubMed  Google Scholar 

  48. Kumagai A, Dunphy WG (1992) Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70:139–151

    CAS  PubMed  Google Scholar 

  49. Izumi T, Walker DH, Maller JL (1992) Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol Biol Cell 3:927–939

    CAS  PubMed  Google Scholar 

  50. Wang R, He G, Nelman-Gonzalez M et al (2007) Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition. Cell 128:1119–1132

    CAS  PubMed  Google Scholar 

  51. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505

    CAS  PubMed  Google Scholar 

  52. Sanchez Y, Wong C, Thoma RS et al (1997) Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501

    CAS  PubMed  Google Scholar 

  53. Kumagai A, Yakowec PS, Dunphy WG (1998) 14-3-3 Proteins act as negative regulators of the mitotic inducer Cdc25 in Xenopus egg extracts. Mol Biol Cell 9:345–354

    CAS  PubMed  Google Scholar 

  54. Yang J, Winkler K, Yoshida M, Kornbluth S (1999) Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. Embo J 18:2174–2183

    CAS  PubMed  Google Scholar 

  55. Peng CY, Graves PR, Ogg S et al (1998) C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding. Cell Growth Differ 9:197–208

    CAS  PubMed  Google Scholar 

  56. Duckworth BC, Weaver JS, Ruderman JV (2002) G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. Proc Natl Acad Sci USA 99:16794–16799

    CAS  PubMed  Google Scholar 

  57. Ferrell JE Jr (1998) How regulated protein translocation can produce switch-like responses. Trends Biochem Sci 23:461–465

    CAS  PubMed  Google Scholar 

  58. Oe T, Nakajo N, Katsuragi Y, Okazaki K, Sagata N (2001) Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes. Dev Biol 229:250–261

    CAS  PubMed  Google Scholar 

  59. Kumagai A, Dunphy WG (1999) Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev 13:1067–1072

    CAS  PubMed  Google Scholar 

  60. Boutros R, Dozier C, Ducommun B (2006) The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 18:185–191

    CAS  PubMed  Google Scholar 

  61. Donzelli M, Draetta GF (2003) Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4:671–677

    CAS  PubMed  Google Scholar 

  62. Margolis SS, Perry JA, Forester CM et al (2006) Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127:759–773

    CAS  PubMed  Google Scholar 

  63. Margolis SS, Walsh S, Weiser DC, Yoshida M, Shenolikar S, Kornbluth S (2003) PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. Embo J 22:5734–5745

    CAS  PubMed  Google Scholar 

  64. Margolis SS, Perry JA, Weitzel DH et al (2006) A role for PP1 in the Cdc2/Cyclin B-mediated posi-tive feedback activation of Cdc25. Mol Biol Cell 17:1779–1789

    CAS  PubMed  Google Scholar 

  65. Margolis SS, Kornbluth S (2004) When the checkpoints have gone: insights into Cdc25 functional activation. Cell Cycle 3:425–428

    CAS  PubMed  Google Scholar 

  66. Izumi T, Maller JL (1993) Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol Biol Cell 4:1337–1350

    CAS  PubMed  Google Scholar 

  67. Hoffman I, Clarke PR, Marcote MJ, Karsenti E, Draetta G (1993) Phosphorylation and activation of human cdc25-C by cdc2/cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J 12:53–63

    Google Scholar 

  68. Kumagai A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380

    CAS  PubMed  Google Scholar 

  69. King RW, Jackson PK, Kirshner MW (1994) Mitosis in transition. Cell 79:563–571

    CAS  PubMed  Google Scholar 

  70. Qian YW, Erikson E, Taieb FE, Maller JL (2001) The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell 12:1791–1799

    CAS  PubMed  Google Scholar 

  71. Yoo HY, Kumagai A, Shevchenko A, Dunphy WG (2004) Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117:575–588

    CAS  PubMed  Google Scholar 

  72. van Vugt MA, Bras A, Medema RH (2004) Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15:799–811

    PubMed  Google Scholar 

  73. Elia AE, Rellos P, Haire LF et al (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115:83–95

    CAS  PubMed  Google Scholar 

  74. Castro A, Peter M, Lorca T, Mandart E (2001) c-Mos and cyclin B/cdc2 connections during Xenopus oocyte maturation. Biol Cell 93:15–25

    CAS  PubMed  Google Scholar 

  75. Yue J, Ferrell JE Jr (2004) Mos mediates the mitotic activation of p42 MAPK in Xenopus egg extracts. Curr Biol 14:1581–1586

    CAS  PubMed  Google Scholar 

  76. Nebreda AR, Gannon JV, Hunt T (1995) Newly synthesized protein(s) must associate with p34cdc2 to activate MAP kinase and MPF during progesterone-induced maturation of Xenopus oocytes. Embo J 14:5597–5607

    CAS  PubMed  Google Scholar 

  77. Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815

    CAS  PubMed  Google Scholar 

  78. Innocente SA, Abrahamson JL, Cogswell JP, Lee JM (1999) p53 Regulates a G2 checkpoint through cyclin B1. Proc Natl Acad Sci USA 96:2147–2152

    CAS  PubMed  Google Scholar 

  79. Passalaris TM, Benanti JA, Gewin L, Kiyono T, Galloway DA (1999) The G(2) checkpoint is maintained by redundant pathways. Mol Cell Biol 19:5872–5881

    CAS  PubMed  Google Scholar 

  80. Taylor WR, DePrimo SE, Agarwal A et al (1999) Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell 10:3607–3622

    CAS  PubMed  Google Scholar 

  81. Taylor WR, Schonthal AH, Galante J, Stark GR (2001) p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276:1998–2006

    CAS  PubMed  Google Scholar 

  82. Yun J, Chae HD, Choy HE et al (1999) p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem 274:29677–29682

    CAS  PubMed  Google Scholar 

  83. Perry ME, Levine AJ (1993) Tumor-suppressor p53 and the cell cycle. Curr Opin Genet Dev 3:50–54

    CAS  PubMed  Google Scholar 

  84. Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546

    CAS  PubMed  Google Scholar 

  85. Mercer WE (1992) Cell cycle regulation and the p53 tumor suppressor protein. Crit Rev Eukaryot Gene Expr 2:251–263

    CAS  PubMed  Google Scholar 

  86. Harper JW, Elledge SJ, Keyomarsi K et al (1995) Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell 6:387–400

    CAS  PubMed  Google Scholar 

  87. el-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    CAS  PubMed  Google Scholar 

  88. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246:280–289

    CAS  PubMed  Google Scholar 

  89. Jackson JG, Pereira-Smith OM (2006) p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res 66:8356–8360

    CAS  PubMed  Google Scholar 

  90. Kaeser MD, Iggo RD (2002) Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99:95–100

    CAS  PubMed  Google Scholar 

  91. He G, Siddik Z, Huang Z et al (2005) Induction of p21 by p53 following DNA damage inhibits both Cdk4 and Cdk2 activities. Oncogene 24:2929–2943

    CAS  PubMed  Google Scholar 

  92. Lohr K, Moritz C, Contente A, Dobbelstein M (2003) p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278:32507–32516

    PubMed  Google Scholar 

  93. Azzam EI, de Toledo SM, Pykett MJ, Nagasawa H, Little JB (1997) CDC2 is down-regulated by ionizing radiation in a p53-dependent manner. Cell Growth Differ 8:1161–1169

    CAS  PubMed  Google Scholar 

  94. de Toledo SM, Azzam EI, Keng P, Laffrenier S, Little JB (1998) Regulation by ionizing radiation of CDC2, cyclin A, cyclin B, thymidine kinase, topoisomerase IIalpha, and RAD51 expression in normal human diploid fibroblasts is dependent on p53/p21Waf1. Cell Growth Differ 9:887–896

    PubMed  Google Scholar 

  95. Elangovan S, Hsieh TC, Wu JM (2008) Growth inhibition of human MDA-mB-231 breast cancer cells by delta-tocotrienol is associated with loss of cyclin D1/CDK4 expression and accompanying changes in the state of phosphorylation of the retinoblastoma tumor suppressor gene product. Anticancer Res 28:2641–2647

    CAS  PubMed  Google Scholar 

  96. Tommasi S, Pfeifer GP (1995) In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol Cell Biol 15:6901–6913

    CAS  PubMed  Google Scholar 

  97. Yamamoto M, Yoshida M, Ono K et al (1994) Effect of tumor suppressors on cell cycle-regulatory genes: RB suppresses p34cdc2 expression and normal p53 suppresses cyclin A expression. Exp Cell Res 210:94–101

    CAS  PubMed  Google Scholar 

  98. Polager S, Kalma Y, Berkovich E, Ginsberg D (2002) E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21:437–446

    CAS  PubMed  Google Scholar 

  99. Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262

    CAS  PubMed  Google Scholar 

  100. Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409

    CAS  PubMed  Google Scholar 

  101. Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3:11–20

    CAS  PubMed  Google Scholar 

  102. Ren B, Cam H, Takahashi Y et al (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16:245–256

    CAS  PubMed  Google Scholar 

  103. Ishida S, Huang E, Zuzan H et al (2001) Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol 21:4684–4699

    CAS  PubMed  Google Scholar 

  104. Muller H, Bracken AP, Vernell R et al (2001) E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev 15:267–285

    CAS  PubMed  Google Scholar 

  105. Kuang J, He G, Huang Z, Khokhar AR, Siddik ZH (2001) Bimodal effects of 1R, 2R-diaminocyclohexane(trans-diacetato)(dichloro)platinum(IV) on cell cycle checkpoints. Clin Cancer Res 7:3629–3639

    CAS  PubMed  Google Scholar 

  106. Zhao H, Piwnica-Worms H (2001) ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139

    CAS  PubMed  Google Scholar 

  107. Siddik ZH, Mims B, Lozano G, Thai G (1998) Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer Res 58:698–703

    CAS  PubMed  Google Scholar 

  108. Strathdee G, Sansom OJ, Sim A, Clarke AR, Brown R (2001) A role for mismatch repair in control of DNA ploidy following DNA damage. Oncogene 20:1923–1927

    CAS  PubMed  Google Scholar 

  109. Hagopian GS, Mills GB, Khokhar AR, Bast RC Jr, Siddik ZH (1999) Expression of p53 in cisplatin-re-sistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R-diaminocyclohex-ane)(trans-diacetato)(dichloro)-platinum(IV). Clin Cancer Res 5:655–663

    CAS  PubMed  Google Scholar 

  110. Mujoo K, Watanabe M, Khokhar AR, Siddik ZH (2005) Increased sensitivity of a metastatic model of prostate cancer to a novel tetravalent platinum analog. Prostate 62:91–100

    CAS  PubMed  Google Scholar 

  111. Chan TA, Hermeking H, Lengauer C, Kinzler KW, Vogelstein B (1999) 14-3-3 Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620

    CAS  PubMed  Google Scholar 

  112. Hermeking H, Lengauer C, Polyak K et al (1997) 14-3-3 Sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1:3–11

    CAS  PubMed  Google Scholar 

  113. Hermeking H, Benzinger A (2006) 14-3-3 Proteins in cell cycle regulation. Semin Cancer Biol 16:183–192

    CAS  PubMed  Google Scholar 

  114. Lodygin D, Hermeking H (2006) Epigenetic silencing of 14-3-3sigma in cancer. Semin Cancer Biol 16:214–224

    CAS  PubMed  Google Scholar 

  115. Aprelikova O, Pace AJ, Fang B, Koller BH, Liu ET (2001) BRCA1 is a selective co-activator of 14-3-3 sigma gene transcription in mouse embryonic stem cells. J Biol Chem 276:25647–25650

    CAS  PubMed  Google Scholar 

  116. Kastan MB, Zhan Q, el-Deiry WS et al (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    CAS  PubMed  Google Scholar 

  117. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192:327–338

    CAS  PubMed  Google Scholar 

  118. Fan W, Richter G, Cereseto A, Beadling C, Smith KA (1999) Cytokine response gene 6 induces p21 and regulates both cell growth and arrest. Oncogene 18:6573–6582

    CAS  PubMed  Google Scholar 

  119. Hollander MC, Sheikh MS, Bulavin DV et al (1999) Genomic instability in Gadd45a-deficient mice. Nat Genet 23:176–184

    CAS  PubMed  Google Scholar 

  120. Liebermann DA, Hoffman B (2007) Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis 39:329–335

    CAS  PubMed  Google Scholar 

  121. Calonge TM, O’Connell MJ (2008) Turning off the G2 DNA damage checkpoint. DNA Repair (Amst) 7:136–140

    CAS  Google Scholar 

  122. Bucher N, Britten CD (2008) G2 checkpoint abrogation and checkpoint kinase-1 targeting in the treatment of cancer. Br J Cancer 98:523–528

    CAS  PubMed  Google Scholar 

  123. Tse AN, Carvajal R, Schwartz GK (2007) Targeting checkpoint kinase 1 in cancer therapeutics. Clin Cancer Res 13:1955–1960

    CAS  PubMed  Google Scholar 

  124. Levesque AA, Eastman A (2007) p53-Based cancer therapies: Is defective p53 the Achilles heel of the tumor? Carcinogenesis 28:13–20

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kuang, J., Wang, R. (2010). Mechanisms of G2 Phase Arrest in DNA Damage-Induced Checkpoint Response. In: Siddik, Z. (eds) Checkpoint Controls and Targets in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60761-178-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-178-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-177-6

  • Online ISBN: 978-1-60761-178-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics