Skip to main content

Therapeutic Targets and Drugs IV: Telomerase-Specific Gene and Vector-Based Therapies for Human Cancer

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Recent advances in genetic engineering technology have opened a new avenue of gene-and vector-based therapies for human cancer. For targeting cancer cells, there is a need for tissue- or cell-specific promoters that can express in diverse tumor types but are silent in normal cells. Genetic approaches fostered remarkable insights into the molecular basis of neoplasm, and a number of oncotropic vectors have been thus generated with exceptional properties regarding tumor-restricted specificity. Human telomerase is highly active in more than 85% of primary cancers, regardless of their tissue origins, and its activity correlates closely with human telomerase reverse transcriptase (hTERT) expression. Since only tumor cells that express telomerase activity would activate this promoter, the hTERT proximal promoter allows for preferential expression of therapeutic genes in tumor cells. Moreover, oncolytic viruses that combine the specificity of hTERT promoter-based expression systems with the lytic efficacy of replicative viruses are being developed as novel anticancer therapeutics and are currently undergoing the clinical trial. Although these strategies need further refinement to succeed clinically, the hTERT promoter confers competence for selective replication of virus in human cancer, an outcome that has important implications for the treatment of human cancers. This article reviews recent findings in this rapidly evolving field: cancer therapeutic and cancer diagnostic approaches using the hTERT promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaplan JM. Adenovirus-based cancer gene therapy. Curr Gene Ther 2005; 5(6):595–605.

    CAS  PubMed  Google Scholar 

  2. Dalba C, Klatzmann D, Logg CR, Kasahara N. Beyond oncolytic virotherapy: replication-competent retrovirus vectors for selective and stable transduction of tumors. Curr Gene Ther 2005; 5(6):655–667.

    CAS  PubMed  Google Scholar 

  3. Le BC, Douar AM. Gene therapy progress and prospects — vectorology: design and production of expression cassettes in AAV vectors. Gene Ther 2006; 13(10):805–813.

    Google Scholar 

  4. Hu YC. Baculovirus vectors for gene therapy. Adv Virus Res 2006; 68:287–320.

    CAS  PubMed  Google Scholar 

  5. Berges BK, Wolfe JH, Fraser NW. Transduction of brain by herpes simplex virus vectors. Mol Ther 2007; 15(1):20–29.

    CAS  PubMed  Google Scholar 

  6. Philpott NJ, Thrasher AJ. Use of nonintegrating lentiviral vectors for gene therapy. Hum Gene Ther 2007; 18(6):483–489.

    CAS  PubMed  Google Scholar 

  7. Yonemitsu Y, Kitson C, Ferrari S et al. Efficient gene transfer to airway epithelium using recombinant Sendai virus. Nat Biotechnol 2000; 18(9):970–973.

    CAS  PubMed  Google Scholar 

  8. Mizuguchi H, Kay MA. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther 1998; 9(17):2577–2583.

    CAS  PubMed  Google Scholar 

  9. Stone D, Lieber A. New serotypes of adenoviral vectors. Curr Opin Mol Ther 2006; 8(5):423–431.

    CAS  PubMed  Google Scholar 

  10. Wilson JM, Engelhardt JF, Grossman M, Simon RH, Yang Y. Gene therapy of cystic fibrosis lung disease using E1 deleted adenoviruses: a phase I trial. Hum Gene Ther 1994; 5(4):501–519.

    CAS  PubMed  Google Scholar 

  11. Crystal RG, McElvaney NG, Rosenfeld MA et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 1994; 8(1):42–51.

    CAS  PubMed  Google Scholar 

  12. Crystal RG, Hirschowitz E, Lieberman M et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther 1997; 8(8):985–1001.

    CAS  PubMed  Google Scholar 

  13. Sterman DH, Treat J, Litzky LA et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther 1998; 9(7):1083–1092.

    CAS  PubMed  Google Scholar 

  14. Fujiwara T, Grimm EA, Mukhopadhyay T, Zhang WW, Owen-Schaub LB, Roth JA. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 1994; 54(9):2287–2291.

    CAS  PubMed  Google Scholar 

  15. Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA. Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 1994; 86(19):1458–1462.

    CAS  PubMed  Google Scholar 

  16. Kagawa S, Gu J, Swisher SG et al. Antitumor effect of adenovirus-mediated Bax gene transfer on p53-sensitive and p53-resistant cancer lines. Cancer Res 2000; 60(5):1157–1161.

    CAS  PubMed  Google Scholar 

  17. Tsunemitsu Y, Kagawa S, Tokunaga N et al. Molecular therapy for peritoneal dissemination of xenotransplanted human MKN-45 gastric cancer cells with adenovirus mediated Bax gene transfer. Gut 2004; 53(4):554–560.

    CAS  PubMed  Google Scholar 

  18. Chen SH, Shine HD, Goodman JC, Grossman RG, Woo SL. Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA 1994; 91(8):3054–3057.

    CAS  PubMed  Google Scholar 

  19. Feldman AL, Restifo NP, Alexander HR et al. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000; 60(6):1503–1506.

    CAS  PubMed  Google Scholar 

  20. Clayman GL, el-Naggar AK, Lippman SM et al. Adenovirus-mediated p53. gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16(6):2221–2232.

    CAS  PubMed  Google Scholar 

  21. Swisher SG, Roth JA, Nemunaitis J et al. Adenovirus-mediated p53 gene transfer in advanced non-small-cell lung cancer. J Natl Cancer Inst 1999; 91(9):763–771.

    CAS  PubMed  Google Scholar 

  22. Nemunaitis J, Swisher SG, Timmons T et al. Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer. J Clin Oncol 2000; 18(3):609–622.

    CAS  PubMed  Google Scholar 

  23. Swisher SG, Roth JA, Komaki R et al. Induction of p53-regulated genes and tumor regres sion in lung cancer patients after intratumoral delivery of adenoviral p53 (INGN 201) and radiation therapy. Clin Cancer Res 2003; 9(1):93–101.

    CAS  PubMed  Google Scholar 

  24. Fujiwara T, Tanaka N, Kanazawa S et al. Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J Clin Oncol 2006; 24(11):1689–1699.

    CAS  PubMed  Google Scholar 

  25. Hawkins LK, Lemoine NR, Kirn D. Oncolytic biotherapy: a novel therapeutic platform. Lancet Oncol 2002; 3(1):17–26.

    CAS  PubMed  Google Scholar 

  26. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57(13):2559–2563.

    CAS  PubMed  Google Scholar 

  27. Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106(6):763–771.

    CAS  PubMed  Google Scholar 

  28. Matsubara S, Wada Y, Gardner TA et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res 2001; 61(16):6012– 6019.

    CAS  PubMed  Google Scholar 

  29. Peng XY, Won JH, Rutherford T et al. The use of the L-plastin promoter for adenoviral-mediated, tumor-specific gene expression in ovarian and bladder cancer cell lines. Cancer Res 2001; 61(11):4405–4413.

    CAS  PubMed  Google Scholar 

  30. Adachi Y, Reynolds PN, Yamamoto M et al. A midkine promoter-based conditionally replicative adenovirus for treatment of pediatric solid tumors and bone marrow tumor purging. Cancer Res 2001; 61(21):7882–7888.

    CAS  PubMed  Google Scholar 

  31. Tsukuda K, Wiewrodt R, Molnar-Kimber K, Jovanovic VP, Amin KM. An E2F-responsive replication-selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Res 2002; 62(12):3438–3447.

    CAS  PubMed  Google Scholar 

  32. Feng J, Funk WD, Wang SS et al. The RNA component of human telomerase. Science 1995; 269(5228):1236–1241.

    CAS  PubMed  Google Scholar 

  33. Harrington L, McPhail T, Mar V et al. A mammalian telomerase-associated protein. Science 1997; 275(5302):973–977.

    CAS  PubMed  Google Scholar 

  34. Meyerson M, Counter CM, Eaton EN et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90 (4):785–795.

    CAS  PubMed  Google Scholar 

  35. Nakamura TM, Morin GB, Chapman KB et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277(5328):955–959.

    CAS  PubMed  Google Scholar 

  36. Nakayama J, Tahara H, Tahara E et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 1998; 18(1):65–68.

    CAS  PubMed  Google Scholar 

  37. Beattie TL, Zhou W, Robinson MO, Harrington L. Reconstitution of human telomerase activity in vitro. Curr Biol 1998; 8(3):177–180.

    CAS  PubMed  Google Scholar 

  38. Takakura M, Kyo S, Kanaya T et al. Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for tran-scriptional activation in immortalized and cancer cells. Cancer Res 1999; 59(3):551–557.

    CAS  PubMed  Google Scholar 

  39. Horikawa I, Cable PL, Afshari C, Barrett JC. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 1999; 59(4):826–830.

    CAS  PubMed  Google Scholar 

  40. Greenberg RA, O'Hagan RC, Deng H et al. Telomerase reverse transcriptase gene is a direct target of c-Myc but is not functionally equivalent in cellular transformation. Oncogene 1999; 18(5):1219–1226.

    CAS  PubMed  Google Scholar 

  41. Wu KJ, Grandori C, Amacker M et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21(2):220–224.

    CAS  PubMed  Google Scholar 

  42. Gunes C, Lichtsteiner S, Vasserot AP, Englert C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res 2000; 60 (8):2116–2121.

    CAS  PubMed  Google Scholar 

  43. Oh S, Song YH, Yim J, Kim TK. Identification of Mad as a repressor of the human telomerase (hTERT) gene. Oncogene 2000; 19(11):1485–1490.

    CAS  PubMed  Google Scholar 

  44. Kyo S, Takakura M, Taira T et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Res 2000; 28 (3):669–677.

    CAS  PubMed  Google Scholar 

  45. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2):127–137.

    CAS  PubMed  Google Scholar 

  46. Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol 2001; 2 (11):827–837.

    CAS  PubMed  Google Scholar 

  47. Veldman T, Horikawa I, Barrett JC, Schlegel R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol 2001; 75(9):4467– 4472.

    CAS  PubMed  Google Scholar 

  48. Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol 2001; 75(12):5559–5566.

    CAS  PubMed  Google Scholar 

  49. Gewin L, Galloway DA. E box-dependent activation of telomerase by human papillomavirus type 16 E6 does not require induction of c-myc. J Virol 2001; 75(15):7198–7201.

    CAS  PubMed  Google Scholar 

  50. Oh S, Song Y, Yim J, Kim TK. The Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene. J Biol Chem 1999; 274 (52):37473–37478.

    CAS  PubMed  Google Scholar 

  51. Fujimoto K, Kyo S, Takakura M et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT) gene promoter: possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Res 2000; 28 (13):2557–2562.

    CAS  PubMed  Google Scholar 

  52. Crowe DL, Nguyen DC, Tsang KJ, Kyo S. E2F-1 represses transcription of the human telomerase reverse transcriptase gene. Nucleic Acids Res 2001; 29(13):2789–2794.

    CAS  PubMed  Google Scholar 

  53. Won J, Yim J, Kim TK. Opposing regulatory roles of E2F in human telomerase reverse transcriptase (hTERT) gene expression in human tumor and normal somatic cells. FASEB J 2002; 16(14):1943–1945.

    CAS  PubMed  Google Scholar 

  54. Kyo S, Takakura M, Kanaya T et al. Estrogen activates telomerase. Cancer Res 1999; 59 (23):5917–5921.

    CAS  PubMed  Google Scholar 

  55. Misiti S, Nanni S, Fontemaggi G et al. Induction of hTERT expression and telomerase activity by estrogens in human ovary epithelium cells. Mol Cell Biol 2000; 20(11):3764– 3771.

    CAS  PubMed  Google Scholar 

  56. Wang Z, Kyo S, Takakura M et al. Progesterone regulates human telomerase reverse transcriptase gene expression via activation of mitogen-activated protein kinase signaling pathway. Cancer Res 2000; 60(19):5376–5381.

    CAS  PubMed  Google Scholar 

  57. Takakura M, Kyo S, Sowa Y et al. Telomerase activation by histone deacetylase inhibitor in normal cells. Nucleic Acids Res 2001; 29(14):3006–3011.

    CAS  PubMed  Google Scholar 

  58. He H, Xia HH, Wang JD et al. Inhibition of human telomerase reverse transcriptase by nonsteroidal antiinflammatory drugs in colon carcinoma. Cancer 2006; 106(6):1243–1249.

    CAS  PubMed  Google Scholar 

  59. Ikeda N, Uemura H, Ishiguro H et al. Combination treatment with 1alpha,25-dihydroxyvi-tamin D3 and 9-cis-retinoic acid directly inhibits human telomerase reverse transcriptase transcription in prostate cancer cells. Mol Cancer Ther 2003; 2(8):739–746.

    CAS  PubMed  Google Scholar 

  60. Pendino F, Dudognon C, Delhommeau F et al. Retinoic acid receptor alpha and retinoid-X receptor-specific agonists synergistically target telomerase expression and induce tumor cell death. Oncogene 2003; 22(57):9142–9150.

    CAS  PubMed  Google Scholar 

  61. Gu J, Kagawa S, Takakura M et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000; 60(19):5359–5364.

    CAS  PubMed  Google Scholar 

  62. Gu J, Fang B. Telomerase promoter-driven cancer gene therapy. Cancer Biol Ther 2003; 2(4 Suppl 1):S64–S70.

    CAS  PubMed  Google Scholar 

  63. Koga S, Hirohata S, Kondo Y et al. FADD gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter to restrict induction of apoptosis to tumors in vitro and in vivo. Anticancer Res 2001; 21(3B):1937–1943.

    CAS  PubMed  Google Scholar 

  64. Komata T, Kondo Y, Kanzawa T et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 2001; 61(15):5796–5802.

    CAS  PubMed  Google Scholar 

  65. Lin T, Huang X, Gu J et al. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 2002; 21(52):8020–8028.

    CAS  PubMed  Google Scholar 

  66. Jacob D, Davis J, Zhu H et al. Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clin Cancer Res 2004; 10(10):3535–3541.

    CAS  PubMed  Google Scholar 

  67. Ito H, Kanzawa T, Miyoshi T et al. Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status. Hum Gene Ther 2005; 16(6):685–698.

    CAS  PubMed  Google Scholar 

  68. Gu J, Zhang L, Huang X et al. A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo. Oncogene 2002; 21 (31):4757–4764.

    CAS  PubMed  Google Scholar 

  69. Lin T, Huang X, Gu J et al. Long-term tumor-free survival from treatment with the GFP-TRAIL fusion gene expressed from the hTERT promoter in breast cancer cells. Oncogene 2002; 21(52):8020–8028.

    CAS  PubMed  Google Scholar 

  70. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33(5):787–791.

    CAS  PubMed  Google Scholar 

  71. Wirth T, Zender L, Schulte B et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003; 63(12):3181–3188.

    CAS  PubMed  Google Scholar 

  72. Lanson NA, Jr, Friedlander PL, Schwarzenberger P, Kolls JK, Wang G. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res 2003; 63(22):7936–7941.

    CAS  PubMed  Google Scholar 

  73. Irving J, Wang Z, Powell S et al. Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther 2004; 11(3):174–185.

    CAS  PubMed  Google Scholar 

  74. Kim E, Kim JH, Shin HY et al. Ad-mTERT-delta19, a conditional replication-competent adenovirus driven by the human telomerase promoter, selectively replicates in and elicits cytopathic effect in a cancer cell-specific manner. Hum Gene Ther 2003; 14(15):1415–1428.

    CAS  PubMed  Google Scholar 

  75. Kuppuswamy M, Spencer JF, Doronin K, Tollefson AE, Wold WS, Toth K. Oncolytic adenovirus that overproduces ADP and replicates selectively in tumors due to hTERT promoter-regulated E4 gene expression. Gene Ther 2005; 12(22):1608–1617.

    CAS  PubMed  Google Scholar 

  76. Li Y, Yu DC, Chen Y et al. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 2001; 61 (17):6428–6436.

    CAS  PubMed  Google Scholar 

  77. Kawashima T, Kagawa S, Kobayashi N et al. Telomerase-specific replication-selective virotherapy for human cancer. Clin Cancer Res 2004; 10(1, Part 1):285–292.

    CAS  PubMed  Google Scholar 

  78. Taki M, Kagawa S, Nishizaki M et al. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (‘Telomelysin-RGD’). Oncogene 2005; 24(19):3130–3140.

    CAS  PubMed  Google Scholar 

  79. Hashimoto Y, Watanabe Y, Shirakiya Y et al. Establishment of biological and pharmacoki-netic assays of telomerase-specificreplication-selective adenovirus (TRAD). Cancer Sci 2008; 99(2):385–390.

    CAS  PubMed  Google Scholar 

  80. Watanabe T, Hioki M, Fujiwara T et al. Histone deacetylase inhibitor FR901228 enhances the antitumor effect of telomerase-specific replication-selective adenoviral agent OBP-301 in human lung cancer cells. Exp Cell Res 2006; 312(3):256–265.

    CAS  PubMed  Google Scholar 

  81. Fujiwara T, Kagawa S, Kishimoto H et al. Enhanced antitumor efficacy of telomerase-selective oncolytic adenoviral agent OBP-401 with docetaxel: preclinical evaluation of chemovirotherapy. Int J Cancer 2006; 119(2):432–440.

    CAS  PubMed  Google Scholar 

  82. Ito H, Aoki H, Kuhnel F et al. Autophagic cell death of malignant glioma cells induced by a conditionally replicating adenovirus. J Natl Cancer Inst 2006; 98(9):625–636.

    CAS  PubMed  Google Scholar 

  83. Endo Y, Sakai R, Ouchi M et al. Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene 2008; 27:2375.

    CAS  PubMed  Google Scholar 

  84. Khuri FR, Nemunaitis J, Ganly I et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6(8):879–885.

    CAS  PubMed  Google Scholar 

  85. Reid T, Galanis E, Abbruzzese J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62(21):6070–6079.

    CAS  PubMed  Google Scholar 

  86. Hecht JR, Bedford R, Abbruzzese JL et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003; 9(2):555–561.

    CAS  PubMed  Google Scholar 

  87. Galanis E, Okuno SH, Nascimento AG et al. Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas. Gene Ther 2005; 12(5):437– 445.

    CAS  PubMed  Google Scholar 

  88. Nemunaitis J, Ganly I, Khuri F et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000; 60(22):6359–6366.

    CAS  PubMed  Google Scholar 

  89. Jacobs C, Lyman G, Velez-Garcia E et al. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck. J Clin Oncol 1992; 10(2):257–263.

    CAS  PubMed  Google Scholar 

  90. Vokes EE. Chemotherapy and integrated treatment approaches in head and neck cancer. Curr Opin Oncol 1991; 3(3):529–534.

    CAS  PubMed  Google Scholar 

  91. Shaked Y, Emmenegger U, Francia G et al. Low-dose metronomic combined with intermit tent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 2005; 65(16):7045–7051.

    CAS  PubMed  Google Scholar 

  92. Kitazono M, Goldsmith ME, Aikou T, Bates S, Fojo T. Enhanced adenovirus transgene expression in malignant cells treated with the histone deacetylase inhibitor FR901228. Cancer Res 2001; 61(17):6328–6330.

    CAS  PubMed  Google Scholar 

  93. Goldsmith ME, Kitazono M, Fok P, Aikou T, Bates S, Fojo T. The histone deacetylase inhibitor FK228 preferentially enhances adenovirus transgene expression in malignant cells. Clin Cancer Res 2003; 9(14):5394–5401.

    CAS  PubMed  Google Scholar 

  94. Pong RC, Lai YJ, Chen H et al. Epigenetic regulation of coxsackie and adenovirus receptor (CAR) gene promoter in urogenital cancer cells. Cancer Res 2003; 63(24):8680–8686.

    CAS  PubMed  Google Scholar 

  95. Hemminki A, Kanerva A, Liu B et al. Modulation of coxsackie-adenovirus receptor expres sion for increased adenoviral transgene expression. Cancer Res 2003; 63(4):847–853.

    CAS  PubMed  Google Scholar 

  96. DeWeese TL, van der PH, Li S et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61(20):7464–7472.

    CAS  PubMed  Google Scholar 

  97. Small EJ, Carducci MA, Burke JM et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hor mone-refractory, metastatic prostate cancer. Mol Ther 2006; 14(1):107–117.

    CAS  PubMed  Google Scholar 

  98. Tearney GJ, Brezinski ME, Bouma BE et al. In vivo endoscopic optical biopsy with optical coherence tomography. Science 1997; 276(5321):2037–2039.

    CAS  PubMed  Google Scholar 

  99. Kelloff GJ, Hoffman JM, Johnson B et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005; 11 (8):2785–2808.

    CAS  PubMed  Google Scholar 

  100. Hoffman RM. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 2005; 5(10):796–806.

    CAS  PubMed  Google Scholar 

  101. Umeoka T, Kawashima T, Kagawa S et al. Visualization of intrathoracically disseminated solid tumors in mice with optical imaging by telomerase-specific amplification of a trans ferred green fluorescent protein gene. Cancer Res 2004; 64(17):6259–6265.

    CAS  PubMed  Google Scholar 

  102. Kishimoto H, Kojima T, Watanabe Y et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nat Med 2006; 12(10):1213–1219.

    CAS  PubMed  Google Scholar 

  103. 'Okada N, Tsukada Y, Nakagawa S et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun 2001; 282(1):173–179.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Fujiwara, T., Urata, Y., Tanaka, N. (2009). Therapeutic Targets and Drugs IV: Telomerase-Specific Gene and Vector-Based Therapies for Human Cancer. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics