Skip to main content

Therapeutic Targets and Drugs III: Tankyrase 1, Telomere-Binding Proteins, and Inhibitors

  • Chapter
Telomeres and Telomerase in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1279 Accesses

Abstract

Telomere maintenance by telomerase enables cancer cells to proliferate indefinitely. Telomerase inhibitors resume the end replication problem and gradually shorten telomeres in telomerase-positive cancer cells. Critically shortened telomeres elicit a DNA damage response and induce senescence, apoptosis, or both. Accordingly, telomerase inhibition is one of the rational strategies for cancer therapy. Meanwhile, there are increasing numbers of telomere-binding proteins that maintain telomere integrity. Among them, tankyrase 1, a telomeric poly(ADP-ribose) polymerase, is one of the most druggable targets, whose enzymatic inhibition enhances the anticancer impact of telomerase inhibitors. Telomere capping is accomplished by sufficient lengths of double- and single-stranded telomeric DNA and their association with shelterin, which consists of TRF1, TRF2, TIN2, Rap1, TPP1, and POT1. Disruption of shelterin function leads to prompt telomere decapping, followed by DNA damage response and growth inhibition. In this chapter, we review telomere length regulation by tankyrase 1 and telomere protection by TRF2 and POT1, as potential target events for telomere-directed molecular cancer therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chabner BA, Roberts TG, Jr. Timeline: Chemotherapy and the war on cancer. Nat Rev Cancer 2005;5:65–72.

    Article  CAS  PubMed  Google Scholar 

  2. Ono M, Kuwano M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 2006;12:7242–51.

    Article  CAS  PubMed  Google Scholar 

  3. Hunter T. Treatment for chronic myelogenous leukemia: The long road to imatinib. J Clin Invest 2007;117:2036–43.

    Article  CAS  PubMed  Google Scholar 

  4. Nahta R, Esteva FJ. Trastuzumab: Triumphs and tribulations. Oncogene 2007;26:3637–43.

    Article  CAS  PubMed  Google Scholar 

  5. Ohki R, Tsurimoto T, Ishikawa F. In vitro reconstitution of the end replication problem. Mol Cell Biol 2001;21:5753–66.

    Article  CAS  PubMed  Google Scholar 

  6. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990;345:458–60.

    Article  CAS  PubMed  Google Scholar 

  7. Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC. Telomere reduction in human colorectal carcinoma and with ageing. Nature 1990;346:866–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994;266:2011–15.

    Article  CAS  PubMed  Google Scholar 

  9. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997;33:787–91.

    Article  CAS  PubMed  Google Scholar 

  10. Hiyama E, Hiyama K. Telomerase as tumor marker. Cancer Lett 2003;194:221–33.

    Article  CAS  PubMed  Google Scholar 

  11. Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 2004;73:177–208.

    Article  CAS  PubMed  Google Scholar 

  12. Damm K, Hemmann U, Garin-Chesa P, et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 2001;20:6958–68.

    Article  CAS  PubMed  Google Scholar 

  13. White LK, Wright WE, Shay JW. Telomerase inhibitors. Trends Biotechnol 2001;19: 114–20.

    Article  CAS  PubMed  Google Scholar 

  14. Seimiya H, Oh-hara T, Suzuki T, et al. Telomere shortening and growth inhibition of human cancer cells by novel synthetic telomerase inhibitors, MST-312, MST-295, and MST-199. Mol Cancer Ther 2002;1:657–65.

    CAS  PubMed  Google Scholar 

  15. Dikmen ZG, Gellert GC, Jackson S, et al. In vivo inhibition of lung cancer by GRN163L: A novel human telomerase inhibitor. Cancer Res 2005;65:7866–73.

    CAS  PubMed  Google Scholar 

  16. d'Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426:194–8.

    Article  PubMed  Google Scholar 

  17. Shay JW, Wright WE. Telomerase: A target for cancer therapeutics. Cancer Cell 2002;2:257–65.

    Article  CAS  PubMed  Google Scholar 

  18. Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell 2005;7:25–37.

    Article  CAS  PubMed  Google Scholar 

  19. Kim SH, Kaminker P, Campisi J. TIN2, a new regulator of telomere length in human cells. Nat Genet 1999;23:405–12.

    Article  CAS  PubMed  Google Scholar 

  20. Liu D, Safari A, O'Connor MS, et al. PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 2004;6:673–80.

    Article  CAS  PubMed  Google Scholar 

  21. Ye JZ, Hockemeyer D, Krutchinsky AN, et al. POT1-interacting protein PIP1: A telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 2004;18: 1649–54.

    Article  CAS  PubMed  Google Scholar 

  22. Houghtaling BR, Cuttonaro L, Chang W, Smith S. A dynamic molecular link between the telomere length regulator TRF1 and the chromosome end protector TRF2. Curr Biol 2004;14:1621–31.

    Article  CAS  PubMed  Google Scholar 

  23. Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 2001;292:1171–5.

    Article  CAS  PubMed  Google Scholar 

  24. Loayza D, de Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 2003;423:1013–18.

    Article  CAS  PubMed  Google Scholar 

  25. de Lange T. Shelterin: The protein complex that shapes and safeguards human telomeres. Genes Dev 2005;19:2100–10.

    Article  PubMed  Google Scholar 

  26. Smith S, Giriat I, Schmitt A, de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 1998;282:1484–7.

    Article  CAS  PubMed  Google Scholar 

  27. Smith S, de Lange T. Cell cycle dependent localization of the telomeric PARP, tankyrase, to nuclear pore complexes and centrosomes. J Cell Sci 1999;112:3649–56.

    CAS  PubMed  Google Scholar 

  28. Smith S, de Lange T. Tankyrase promotes telomere elongation in human cells. Curr Biol 2000;10:1299–302.

    Article  CAS  PubMed  Google Scholar 

  29. Chang W, Dynek JN, Smith S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev 2003;17:1328–33.

    Article  CAS  PubMed  Google Scholar 

  30. Cook BD, Dynek JN, Chang W, Shostak D, Smith S. A role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 2002;22:332–42.

    Article  CAS  PubMed  Google Scholar 

  31. Donigian JR, de Lange T. The role of the poly(ADP-ribose) polymerase tankyrase1 in telomere length control by the TRF1 component of the shelterin complex. J Biol Chem 2007;282:22662–7.

    Article  CAS  PubMed  Google Scholar 

  32. Seimiya H. The telomeric PARP, tankyrases, as targets for cancer therapy. Br J Cancer 2006;94:341–5.

    Article  CAS  PubMed  Google Scholar 

  33. Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005;4:421–40.

    Article  CAS  PubMed  Google Scholar 

  34. Seimiya H, Smith S. The telomeric poly(ADP-ribose) polymerase, tankyrase 1, contains multiple binding sites for telomeric repeat binding factor 1 (TRF1) and a novel acceptor, 182-kDa tankyrase-binding protein (TAB182). J Biol Chem 2002;277:14116–26.

    Article  CAS  PubMed  Google Scholar 

  35. Seimiya H, Muramatsu Y, Smith S, Tsuruo T. Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation. Mol Cell Biol 2004;24:1944–55.

    Article  CAS  PubMed  Google Scholar 

  36. Xu D, Zheng C, Bergenbrant S, et al. Telomerase activity in plasma cell dyscrasias. Br J Cancer 2001;84:621–5.

    Article  CAS  PubMed  Google Scholar 

  37. Gelmini S, Poggesi M, Distante V, et al. Tankyrase, a positive regulator of telomere elongation, is over expressed in human breast cancer. Cancer Lett 2004;216:81–7.

    Article  CAS  PubMed  Google Scholar 

  38. Yamada M, Tsuji N, Nakamura M, et al. Down-regulation of TRF1, TRF2 and TIN2 genes is important to maintain telomeric DNA for gastric cancers. Anticancer Res 2002;22:3303–7.

    CAS  PubMed  Google Scholar 

  39. Chi N.-W., Lodish HF. Tankyrase is a Golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 2000;275:38437–44.

    Article  CAS  PubMed  Google Scholar 

  40. Dynek JN, Smith S. Resolution of sister telomere association is required for progression through mitosis. Science 2004;304:97–100.

    Article  CAS  PubMed  Google Scholar 

  41. Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S. Protein requirements for sister telomere association in human cells. EMBO J 2007;26:4867–78.

    Article  CAS  PubMed  Google Scholar 

  42. Chang P, Coughlin M, Mitchison TJ. Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 2005;7:1133–9.

    Article  CAS  PubMed  Google Scholar 

  43. Sbodio JI, Chi N.-W. Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J Biol Chem 2002;277:31887–92.

    CAS  Google Scholar 

  44. Muramatsu Y, Ohishi T, Sakamoto M, Tsuruo T, Seimiya H. Cross-species difference in telomeric function of tankyrase 1. Cancer Sci 2007;98:850–7.

    Article  CAS  PubMed  Google Scholar 

  45. Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell 1999;97:503–14.

    Article  CAS  PubMed  Google Scholar 

  46. Stewart SA, Ben-Porath I, Carey VJ, O'Connor BF, Hahn WC, Weinberg RA. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 2003;33:492–6.

    Article  CAS  PubMed  Google Scholar 

  47. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 1999;283:1321–5.

    Article  CAS  PubMed  Google Scholar 

  48. van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell 1998;92:401–13.

    Article  PubMed  Google Scholar 

  49. Shin-ya K, Wierzba K, Matsuo K, et al. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J Am Chem Soc 2001;123:1262–3.

    Article  CAS  PubMed  Google Scholar 

  50. Tahara H, Shin-Ya K, Seimiya H, Yamada H, Tsuruo T, Ide T. G-quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 2006;25:1955–66.

    Article  CAS  PubMed  Google Scholar 

  51. Gomez D, Wenner T, Brassart B, et al. Telomestatin-induced telomere uncapping is modu lated by POT1 through G-overhang extension in HT1080 human tumor cells. J Biol Chem 2006;281:38721–9.

    Article  CAS  PubMed  Google Scholar 

  52. Gomez D, O′Donohue MF, Wenner T, et al. The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 2006;66:6908–12.

    Article  CAS  PubMed  Google Scholar 

  53. Tauchi T, Shin-ya K, Sashida G, et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: In vitro and in vivo studies in acute leukemia. Oncogene 2006;25:5719–25.

    Article  CAS  PubMed  Google Scholar 

  54. Hockemeyer D, Palm W, Else T, et al. Telomere protection by mammalian Pot1 requires interaction with Tpp1. Nat Struct Mol Biol 2007;14:754–61.

    Article  CAS  PubMed  Google Scholar 

  55. Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 2007;448:1068–71.

    Article  CAS  PubMed  Google Scholar 

  56. Celli GB, de Lange T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 2005;7:712–18.

    Article  CAS  PubMed  Google Scholar 

  57. He H, Multani AS, Cosme-Blanco W, et al. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J 2006;25:5180–90.

    Article  CAS  PubMed  Google Scholar 

  58. Wu L, Multani AS, He H, et al. Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 2006;126:49–62.

    Article  CAS  PubMed  Google Scholar 

  59. Hockemeyer D, Daniels JP, Takai H, de Lange T. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 2006;126:63–77.

    Article  CAS  PubMed  Google Scholar 

  60. Matsutani N, Yokozaki H, Tahara E, et al. Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int J Oncol 2001;19:507–12.

    CAS  PubMed  Google Scholar 

  61. Munoz P, Blanco R, Flores JM, Blasco MA. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 2005;37:1063–71.

    Article  CAS  PubMed  Google Scholar 

  62. Blanco R, Munoz P, Flores JM, Klatt P, Blasco MA. Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 2007;21:206–20.

    Article  CAS  PubMed  Google Scholar 

  63. Kondo T, Oue N, Yoshida K, et al. Expression of POT1 is associated with tumor stage and telomere length in gastric carcinoma. Cancer Res 2004;64:523–9.

    Article  CAS  PubMed  Google Scholar 

  64. Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): Novel functions for an old molecule. Nat Rev Mol Cell Biol 2006;7:517–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Seimiya, H., Tsuruo, T. (2009). Therapeutic Targets and Drugs III: Tankyrase 1, Telomere-Binding Proteins, and Inhibitors. In: Hiyama, K. (eds) Telomeres and Telomerase in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-879-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-879-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-306-0

  • Online ISBN: 978-1-60327-879-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics