Skip to main content

Potential for Horizontal Gene Transfer in Microbial Communities of the Terrestrial Subsurface

  • Protocol
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 532))

Abstract

The deep terrestrial subsurface is a vast, largely unexplored environment that is oligotrophic, highly heterogeneous, and may contain extremes of both physical and chemical factors. In spite of harsh conditions, subsurface studies at several widely distributed geographic sites have revealed diverse communities of viable organisms, which have provided evidence of low but detectable metabolic activity. Although much of the terrestrial subsurface may be considered to be distant and isolated, the concept of horizontal gene transfer (HGT) in this environment has far-reaching implications for bioremediation efforts and groundwater quality, industrial harvesting of subsurface natural resources such as petroleum, and accurate assessment of the risks associated with DNA release and transport from genetically modified organisms. This chapter will explore what is known about some of the major mechanisms of HGT, and how the information gained from surface organisms might apply to conditions in the terrestrial subsurface. Evidence for the presence of mobile elements in subsurface bacteria and limited retrospective studies examining genetic signatures of potential past gene transfer events will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Elsas, J. D., Gardener, B. B., Wolters, A. C., Smit, E. (1998). Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64, 880–889.

    PubMed  Google Scholar 

  2. Normander, B., Christensen, B. B., Molin, S., Kroer, N. (1998) Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl Environ Microbiol 64, 1902–1909.

    CAS  PubMed  Google Scholar 

  3. Mølbak, L., Licht, T. R., Kvist, T., Kroer, N., Andersen, S. R. (2003) Plasmid transfer from Pseudomonas putida to the indigerous bacteria on alfalfa sprouts; characterization, direct quantification, and in situ localization of transconjugant cells. Appl Environ Microbiol 69, 5536–5542.

    Article  PubMed  CAS  Google Scholar 

  4. Musovic, S., Oregaard, G., Kroer, N., Sørensen, S. J. (2006) Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhisosphere. Appl Environ Microbiol 72, 6687–6692.

    Article  CAS  PubMed  Google Scholar 

  5. Lagido, C, Wilson, I. J., Glover, L. A., Prosser, J., I. (2003) A model for bacterial conjugal gene transfer on solid surfaces. FEMS Microbiol Ecol. 44, 67–78.

    Article  CAS  PubMed  Google Scholar 

  6. Weinbauer, M. G. (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28, 127–181.

    Article  CAS  PubMed  Google Scholar 

  7. Pohlmann, A., Fricke, W. F., Reinecke, F., Kusian, B., Liesegang, H., Cramm, R., Eitinger, T., Ewering, C., Pötter, M., Schwartz, E., Strittmatter, A., Voβ, I., Gottschalk, G., Steinbüchel, A., Friedrich, B., Bowien, B. (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24, 1257–1262.

    Article  PubMed  Google Scholar 

  8. Makarova, K. S., Koonin, E. V. (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189, 1199–1208.

    Article  CAS  PubMed  Google Scholar 

  9. Hotopp, J. C., Clark, M. E., Oliveira, D. C., Foster, J. M., Fisher, P., Torres, M. C., Giebel, J. D., Kumar, N., Ishmael, N., Wang, S., Ingram, J., Nene, R. V., Shepar, J., Tomkins, J., Richards, S., Spiro, D. J., Ghedin, E., Slatko, B. E., Tettelin, H., Werren, J. H. (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756.

    Article  CAS  Google Scholar 

  10. Osborn, A. M., Böltner, D. (2002) When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48, 202–212.

    Article  PubMed  Google Scholar 

  11. Whitman, W. B., Coleman, D. C., Wiebe, W. J. (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95, 6578–6583.

    Article  CAS  PubMed  Google Scholar 

  12. Chandler, D. P., Brockman, F. J., Bailey, T. J., Fredrickson, J. K. (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microbial Ecol 36, 37–50.

    Article  CAS  Google Scholar 

  13. Pedersen, K., Ekendahl, S. (1990) Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microbial Ecol 20, 37–52.

    Article  Google Scholar 

  14. Onstott, T. C., Moser, D. P., Pfiffner, S. M., Fredrickson, J. K, Brockman, F. J., Phelps, T. J., White, D. C., Peacock, A., Balkwill, D., Hoover, R., Krumholz, L. R., Borscik, M., Kieft, T. L., Wilson, R. (2003) Indigenous and contaminant microbes in ultradeep mines. Environ Microbiol 5, 1168–1191.

    Article  CAS  PubMed  Google Scholar 

  15. Lovley, D. R., Chapelle, F. H. (1995) Deep subsurface microbial processes. Rev Geophys 33, 365–381.

    Article  Google Scholar 

  16. Fredrickson, J. K., Fletcher, M. (eds.) (2001) Subsurface microbiology and biogeochemistry. Wiley-Liss, Inc., Danvers, MA.

    Google Scholar 

  17. Colwell, F. S. (2001) Constraints on the distribution of microorganisms in subsurface environments, in Subsurface microbiology and biogeochemistry. (Fredrickson, J. K., Fletcher, M. eds.) Wiley-Liss, Inc., Danvers, MA, pp. 3–37.

    Google Scholar 

  18. Tobin, K. J., Onstott, T. C., Deflaun, M., Colwell, F., Fredrickson, J. (1999) In situ imaging of microorganisms in geologic material. J Microbiol Meth 37, 201–213.

    Article  CAS  Google Scholar 

  19. Amy, P. S., Durham, C., Hall, D., Haldeman, D. L. (1998) Starvation-survival of deep subsurface isolates. Curr Microbiol 26, 345–352.

    Article  Google Scholar 

  20. Kieft, T. L., Wilch, E., O’connor, K., Ringelberg, D. B., White, D. C. (1997) Survival and phospholipids fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl Environ Microbiol 63, 1531–1542.

    CAS  PubMed  Google Scholar 

  21. Balkwill, D. L., Drake, G. R., Reeves, R. H., Fredrickson, J. K., White, D. C., Ringelberg, D. B., Chandler, D. P., Romine, M. F., Kennedy, D. W., Spadoni, C. M. (1997) Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea, sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47, 191–201.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, G., Dong, H., Xu, Z., Zhao, D., Zhang, C. (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese continental scientific drilling project in China. Appl Environ Microbiol 71, 3213–3227.

    Article  CAS  PubMed  Google Scholar 

  23. Stotsky, G. (1989) Gene transfer among bacteria in soil, in Gene transfer in the environment. (Levy, S. B., Miller, R. V. eds.) McGraw-Hill Book C., New York. pp. 165–222.

    Google Scholar 

  24. Caumont, A. B., Jamieson, G. A., Pichuantes, S., Nguyen, A. T., Litvak, S., Dupont, C. (1996) Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: potential use for inhibitor screening. Curr Genetics 29, 503–10.

    Article  CAS  Google Scholar 

  25. DeVries, J, Meier, P., Wackernagel, W. (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195, 211–215.

    Article  CAS  Google Scholar 

  26. Ippen-Ihler, K. (1989) Bacterial conjugation, in Gene transfer in the environment. (Levy, S. B., Miller, R. V. eds.) McGraw-Hill Book C., New York. pp. 33–72.

    Google Scholar 

  27. Kokjohn, T. A. (1989) Transduction: mechanism and potential for gene transfer in the environment, in Gene transfer in the environment. (Levy, S. B., Miller, R. V. eds.) McGraw-Hill Book C., New York. pp. 33–72.

    Google Scholar 

  28. Lorenz, M. G., Wackernagel, W. (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58, 563–602.

    CAS  PubMed  Google Scholar 

  29. Nielsen, K. M., Townsend, J. P. (2004) Monitoring and modeling horizontal gene transfer. Nature Biotechnol 22, 1110–1114.

    Article  CAS  Google Scholar 

  30. Saye, D. J., Miller, R. V. (1989) The aquatic environment: consideration of horizontal gene transmission in a diversified habitat, in Gene transfer in the environment. (Levy, S. B., Miller, R. V. eds.) McGraw-Hill Book C., New York. pp. 33–72.

    Google Scholar 

  31. Leenheer, J. A., Malcolm, R. L., McKinley, P. W., Eccles, L. A. (1974) Occurrence of dissolved organic carbon in selected groundwater samples in the United States. U S Geol Surv J Res 2, 361–369.

    CAS  Google Scholar 

  32. Chapelle, F. H., Lovley, D. R. (1990) Rates of metabolism in deep coastal plain aquifers. Appl Environ Microbiol 56, 1865–1874.

    CAS  PubMed  Google Scholar 

  33. Kieft, T. L., Phelps, J. T. (1997) Life in the slow lane: activities of microorganisms in the subsurface, in The microbiology of the terrestrial deep subsurface. (Amy, P. S., Haldeman, D. L. eds.) CRC Press, Boca Raton, FL. pp. 137–164.

    Google Scholar 

  34. Onstott, T. C., Phelps, T. J. Kieft, T. L., Colwell, F. S., Balkwill, D. L., Fredrickson, J. K., Brockman, F. J. (1998) A global perspective on the microbial abundance and activity in the deep subsurface, in Enigmatic microorganisms and life in extreme environments: cellular origin and life in extreme habitats. (Seckbach, J. ed.) Kluwer Publications, Norwell, MA. pp. 1–14.

    Google Scholar 

  35. Palmen, R., Driessen, A. J., Hellingwerf, K. J. (1994) Biological aspects of the translocation of macromolecules across bacterial membranes. Biochim Biophys Acta 1183, 417–451.

    Article  CAS  PubMed  Google Scholar 

  36. Frost, L. S., Leplae, R., Summers, A. O., Toussaint, A. (2005) Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol. 3, 722–732.

    Article  CAS  Google Scholar 

  37. Grange, W., Duckely, M., Husale, S., Jacob, S., Engel, A., Hegner, M. (2008) VirE2: a unique ssDNA-compacting molecular machine. PLOS Biol. 6, e44.

    Article  PubMed  CAS  Google Scholar 

  38. Evilevitch, A., Lavelle, L., Knobler, C. M., Raspaud, E., Gelbart, W. M. (2003) Osmotic pressure inhibition of DNA ejection from phage. Proc Natl Acad Sci USA 100, 9292–9295.

    Article  CAS  PubMed  Google Scholar 

  39. Soã-José, C., de Frutos, M, Raspaud, E., Santos, M. A., Tavares, P. (2007) Pressure built by DNA packaging inside virions: enough to drive DNA ejection in vitro, largely insufficient for delivery into the bacterial cytoplasm. J Mol Biol 374, 346–355.

    Article  PubMed  CAS  Google Scholar 

  40. Orrego, C., Arnaud, M., Halvorson, H. O. (1978) Bacillus subtilis 168 genetic transformation mediated by outgrowing spores: necessity for cell contact. J Bacteriol 134, 973–981.

    CAS  PubMed  Google Scholar 

  41. Iyer, L. M., Makarova, K. S., Koonin, E. V., Aravind, L. (2004) Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 32, 5260–5279.

    Article  CAS  PubMed  Google Scholar 

  42. Chemla, Y. R., Aathavan, K., Michaelis, J., Grimes, S., Jardine, P. J., Anderson, D. L., Bustamante, C. (2005) Mechanism of force generation of a viral DNA packaging motor. Cell 122, 683–692.

    Article  CAS  PubMed  Google Scholar 

  43. Tato, I., Zunzunegui, S., de la Cruz, F., Cabezon, E. (2005) TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc Natl Acad Sci USA 102, 8156–8161.

    Article  CAS  PubMed  Google Scholar 

  44. Flannagan, S. E., Zitzow, L. A., Su, Y. A., Clewell, D. B. (1994) Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32, 350–354.

    Article  CAS  PubMed  Google Scholar 

  45. Londoño-Vallejo, J. A., Dubnau, D. (1994) Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J Bacteriol 176, 4642–4645.

    PubMed  Google Scholar 

  46. Maier, B., Chen, I., Dubnau, D., Sheetz, M. P. (2004) DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nat Struct Mol Biol 11, 643–649.

    Article  CAS  PubMed  Google Scholar 

  47. Kieft, T. L., Brockman, F. J. (2001) Vadose zone microbiology, in Subsurface microbiology and biogeochemistry. (Fredrickson, J. K., Fletcher, M. eds.) Wiley-Liss, Inc. Danvers, MA, pp. 141–169.

    Google Scholar 

  48. Smets, B. F., Rittmann, B. E., Stahl, D. A. (1993) The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Appl Environ Microbiol 59, 3430–3437.

    CAS  PubMed  Google Scholar 

  49. Muela, A., Pocino, M., Arana, I., Justo, J. I., Iriberri, J., Barcina, I. (1994) Effect of growth phase and parental cell survival in river water on plasmid transfer between Esherichia coli strains. Appl Environ Microbiol 60, 4273–4278.

    CAS  PubMed  Google Scholar 

  50. Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P., Cvitkovitch, D. G. (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183, 897–908.

    Article  CAS  PubMed  Google Scholar 

  51. Novotny, C.P., Lavin, K. 1971. Some effects of temperature on the growth of F pili. J Bacteriol 107, 671–682.

    CAS  PubMed  Google Scholar 

  52. Page, W. J., von Tigerstrom, M. (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139, 1058–1061.

    CAS  PubMed  Google Scholar 

  53. Lorenz, M. G., Reipschläger, K., Wackernagel, W. (1992) Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Arch Microbiol 157, 355–360.

    Article  CAS  PubMed  Google Scholar 

  54. Balkwill, D. L., Murphy, E. M., Fair, D. M., Ringelberg, D. B., White, D. C. (1998) Microbial communities in high and low recharge environments: implications for microbial transport in the Vadose zone. Microb Ecol 35, 156–171.

    Article  CAS  PubMed  Google Scholar 

  55. Kieft, T. L., Murphy, E. M., Haldeman, D. L., Amy P. S., Bjornstad, B. N., McDonald, E. V., Ringelberg D. B., White, D. C., Stair, J., Griffiths, R. P., Gsell, T. C., Holben, W. E., Boone, D. R. (1998) Microbial transport, survival, and succession in a sequence of buried sediments. Microb Ecol 36, 336–348.

    Article  CAS  PubMed  Google Scholar 

  56. Sinclair, J. L., Ghiorse, W. C. (1989) Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments. Geomicrobiol J 7, 15–32.

    Article  Google Scholar 

  57. Ranjard, L., Poly, F., Combrisson, J., Richaume, A., Gourbière, F., Thioulouse, J., Nazaret, S. (2000) Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA) Microb Ecol 39, 263–272.

    CAS  PubMed  Google Scholar 

  58. Ansaldi, M., Marolt, D., Stebe, T., Mandic-Mulec, I., Dubnau, D. (2002) Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Mol Microbiol 44, 1561–1573.

    Article  CAS  PubMed  Google Scholar 

  59. Solomon, J. M., Lazazzera, B. A., Grossman, A. D. (1996) Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev 10, 2014–24.

    Article  CAS  PubMed  Google Scholar 

  60. Oger, P., Farrand, S. K. (2002) Two opines control conjugal transfer of an Agrobacterium plasmid by regulating expression of separate copies of the quorum-sensing activator gene traR. J Bacteriol 184, 1121–31.

    Article  CAS  PubMed  Google Scholar 

  61. McAnulla, C., Edwards, A., Sanchez-Contreras, M., Sawers, R. G., Downie, J. A. (2007) Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology 153, 2074–2082.

    Article  CAS  PubMed  Google Scholar 

  62. Ruhfel, R. E., Leonard, B. A. B., Dunny, G. M. (1997) Pheremone-inducible conjugation in Enterococcus faecalis: mating interactions mediated by chemical signals and direct contact. In Bacteria as Multicellular Organisms (Shapiro, J. A., Dworkin, M. eds.). Oxford University Press, Inc. New York.

    Google Scholar 

  63. Cozzarelli, I. M., Weiss, J. V. (2007) Biogeochemistry of aquifer systems, in Manual of environmental microbiology, 3rd ed. (Hurst, C. J., Crawford, R. L., Garland, J. L, Lipson, D. A., Mills, A. L., Stetzenbach, L. D. eds.) ASM Press, Washington D.C., pp. 843–859.

    Google Scholar 

  64. Baker, B. J., Moser, D. P., MacGregor, B. J., Fishbain, S., Wagner, M., Fry, N. K., Jackson, B., Speolstra, N., Loos, S., Takai, K., Lollar, B. S., Fredrickson, J., Balkwill, D., Onstott, T. C., Wimpee, C. F., Stahl, D. A. (2003) Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol. 5, 267–77.

    Article  PubMed  Google Scholar 

  65. Boyd, E. S., Cummings, D. E., Geesey, G. G. (2007) Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb Ecol 54, 170–82.

    Article  PubMed  Google Scholar 

  66. Tobin, K. J., Onstott, T. C., DeFlaun, M. F., Colwell, F. S., Fredrickson, J. (1999) In situ imaging of microorganisms in geologic material. J Microbiol Meth 37, 201–213.

    Article  CAS  Google Scholar 

  67. Mølin, S., Tolker-Nielsen, T. (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilization of the biofilm structure. Curr Opin Biotechnol 14, 255–261.

    Article  PubMed  CAS  Google Scholar 

  68. Licht, T. R., Christensen, B. B., Krogfelt, K. A., Mølin, S. (1999) Plasmid transfer in the animal intestine and other dynamic bacterial populations: the role of community structure and environment. Microbiology 145, 2615–2622.

    CAS  PubMed  Google Scholar 

  69. Lawrence, J. G., Hatfull, G. F., Hendrix, R. W. (2002) Imbroglios of viral taxonomy: genetic exchange and the failings of phenetic approaches. J Bacteriol 184, 4891–4905.

    Article  CAS  PubMed  Google Scholar 

  70. Marsh, P., Wellington, E. M. H. (1994) Phage-host interactions in soil. FEMS Microbiol Ecol 15, 99–107.

    Article  CAS  Google Scholar 

  71. Ghosh, D., Roy, K., Williamson, KE, White, D. C., Womack, K. E., Sublette, K. L., Radosevich, M. (2008). Prevalence of lysogeny among soil bacteria and the presence of 16S rRNA and trzN genes in viral-community DNA. Appl Environ Microbiol 74, 495–502.

    Article  CAS  PubMed  Google Scholar 

  72. Williamson, K. E., Radosevich, M., Wommack, K. E. (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71, 3119–3125.

    Article  CAS  PubMed  Google Scholar 

  73. Long, R., Azam, F. (2001) Microscale patchiness of bacterioplankton assemblage richness in seawater. Aquat Microb Ecol 26, 101–113.

    Article  Google Scholar 

  74. Kovacik, W. P. Jr., Takai, K., Mormile, M. R., McKinley, J. P., Brockman, F. J., Fredrikson, J. K., Holben, W. E. (2006) Molecular analysis of deep subsurface Cretaceous rock indicates abundant Fe(III)- and \({\rm S}^{0}\)-reducing bacteria in a sulfate-rich environment. Environ Microbiol 8, 141–155.

    Article  CAS  PubMed  Google Scholar 

  75. Lehman, R. M., Colwell, F. S., Bala, G. A. (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl Environ Microbiol 67, 2799–2809.

    Article  CAS  PubMed  Google Scholar 

  76. Pedersen, K., Arlinger, J., Hallbeck, L., Pettersson, C. (1996) Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S rRNA gene sequencing. Mol Ecol 5, 427–436.

    CAS  PubMed  Google Scholar 

  77. Ekendahl, S., Arlinger, J., Ståhl, F., Pedersen, K., (1994) Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy. Microbiology 140, 1575–1583.

    Article  CAS  PubMed  Google Scholar 

  78. DeSantis, T. Z., Brodie, E. L., Moberg, J. P., Zubieta, I. X., Piceno, Y. M., Andersen, G. L. (2007) High-density 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53, 371–383.

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, J., Xia, B., Huang, H., Palumbo, A. V., Tiedje, J. M. (2002) Microbial diversity and heterogeneity in sandy subsurface soils. Appl Environ Microbiol 70, 1723–1734.

    Article  CAS  Google Scholar 

  80. Horner-Devine, M. C., Leibold, M. A., Smith, V. H., Bohannan, B. J. (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6, 613–622.

    Article  Google Scholar 

  81. Stotsky, G. (1997) Soil as an environment for microbial life. In Modern soil microbiology (van Elsas, J. D., Trevors, J. T., Wellington, E. M. H., eds.) Marcel Dekker Inc., New York.

    Google Scholar 

  82. Dechesne, A., Or, D., Smets, B. F. (2008) Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains. FEMS Microbiol Ecol 64, 1–8.

    Article  CAS  PubMed  Google Scholar 

  83. Danner, D.B., Deich, R. A., Sisco, K.L., Smith, H.O. (1980) An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11, 311–318.

    Article  CAS  PubMed  Google Scholar 

  84. Hülter, N., Wackernagel, W. (2008) Double illegitimate recombination events integrate DNA segments through two different mechanisms during natural transformation of Acinetobacter baylyi. Mol Microbiol 67, 984–995.

    Article  PubMed  CAS  Google Scholar 

  85. Meier P., Wackernagel W. (2003) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol Microbiol 48, 1107–1118.

    Article  CAS  PubMed  Google Scholar 

  86. Sikorski, J., Möhle, M., Wackernagel, W. (2002) Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediment and soils. Environ Microbiol 4, 465–476.

    Article  CAS  PubMed  Google Scholar 

  87. Leisner, M., Stingl, K., Rädler, J. O., Maier, B. (2007) Basal expression rate of comK sets a ‘switching window’ into the K-state of Bacillus subtilis. Mol Microbiol 63, 1806–1816.

    Article  CAS  PubMed  Google Scholar 

  88. Greaves, M. P., Wilson, M. J. (1969) The adsorbtion of nucleic acids by montmorillonite. Soil Bio Biochem 2, 257–268.

    Article  Google Scholar 

  89. Joppien, G. R. (1978) Characterization of adsorbed polymers at the charged silica-aqueous electrolyte interface. J Phys Chem 82, 2210–2215.

    Article  CAS  Google Scholar 

  90. Chamier, B., Lorenz, M. G., Wackernagel, W. (1993) Natural transformation of Acetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl Environ Microbiol 59, 1662–1667.

    CAS  PubMed  Google Scholar 

  91. Romanowski, G., Lorenz, M. G., Wackernagel, W. (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl Environ Microbiol 57, 1057–1061.

    CAS  PubMed  Google Scholar 

  92. Romanowski, G., Lorenz, M. G., Wackernagel, W. (1993) Plasmid DNA in a groundwater aquifer microcosm – adsorbtion, DNAse resistance and natural genetic transformation in Bacillus subtilis. Mol Ecol 2, 171–181.

    Article  CAS  PubMed  Google Scholar 

  93. Lorenz, M. G., Aardema, B. W., Wackernagel, W. (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. J Gen Microbiol 134, 107–112.

    CAS  PubMed  Google Scholar 

  94. Lorenz, M. G., Wackernage, W. (1990) Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154, 380–385.

    Article  CAS  PubMed  Google Scholar 

  95. Ogunseitan, O. A., Tedford, E. T., Pacia, D., Sirotkin, K. M., Sayler, G. S. (1987) Distribution of plasmids in groundwater bacteria. J Ind Microbiol 1, 311–317.

    Article  CAS  Google Scholar 

  96. Fredrickson, J. K., Hicks, R. J., Li, S. W., Brockman, F. J. (1988) Plasmid incidence in bacteria from deep subsurface sediments. Appl Environ Microbiol 54, 2916–2923.

    CAS  PubMed  Google Scholar 

  97. Ladd, T. I., Ventullo, R. M., Wallis, P. M., Costerton, J. W. (1982) Heterotrophic activity and biodegradation of labile and refractory compounds by groundwater and stream microbial populations. Appl Environ Microbiol 44, 321–329.

    CAS  PubMed  Google Scholar 

  98. Kobori, H., Sullivan, C. W., Shizuya, H. (1984) Bacterial plasmids in Antarctic natural microbial assemblages. Appl Environ Microbiol 48, 515–518.

    CAS  PubMed  Google Scholar 

  99. Hermansson, M., Jones, G. W., Kjelleberg, S. (1987) Frequency of antibiotic and heavy-metal resistance, pigmentation, and plasmids in bacteria of the marine air-water interface. Appl Environ Microbiol 53, 2338–2342.

    CAS  PubMed  Google Scholar 

  100. Sobecky, P. A., Mincer, T. J., Chang, M. C., Helinski, D. R. (1997) Plasmids isolated from marine sediment microbial communities contain replication and incompatibility regions unrelated to those of known plasmid groups. Appl Environ Microbiol 63, 888–895.

    CAS  PubMed  Google Scholar 

  101. Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Tang, Y., Liu, X., Han, W., Peng, X., Liu, R., Wang, L. (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104, 5602–5607.

    Article  CAS  PubMed  Google Scholar 

  102. Brockman, F. J., Denovan, B. A., Hicks, R. J., Fredrickson, J. K. (1989) Isolation and characterization of quinoline-degrading bacteria from subsurface sediments. Appl Environ Microbiol 55, 1029–1032.

    CAS  PubMed  Google Scholar 

  103. Baya, A. M., Brayton, P. R., Brown, V. L., Grimes, D. J., Russek-Cohen, E., Colwell, R. R. (1986) Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol 51, 1285–1292.

    CAS  PubMed  Google Scholar 

  104. Basta, T., Keck, A., Klein, J., Stolz, A. (2004) Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains. J Bacteriol 186, 3962–3872.

    Article  CAS  Google Scholar 

  105. Romine, M. F., Stillwell, L. C., Wong, K.-K., Thurston, S. J., Sisk, E. C., Sensen, C., Gaasterland, T., Fredrickson, J. K., Saffer, J. D. (1999) Complete sequence of the 184-kilobases catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181, 1585–1602.

    CAS  PubMed  Google Scholar 

  106. Dowd, S. E., Pillai, S. D., Wang, S., Corapcioglu, M. Y. (1998) Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Appl Environ Microbiol 64, 405–410.

    CAS  PubMed  Google Scholar 

  107. Blanford, W. J., Brusseau, M. L., Jim Yeh, T. C., Gerba, C. P., Harvey, R. (2005). Influence of water chemistry and travel distance on bacteriophage PRD-1 transport in a sandy aquifer. Water Res 39, 2345–2357.

    Article  CAS  PubMed  Google Scholar 

  108. Angly, F. E., Fels, B., Breitbart, M., Salamon, P., Edwards, R. A., Carlson, C., Chan, A. M., Haynes, M., Kelley, S., Liu, H., Mahaffy, J. M., Mueller, J. E., Nulton, J., Olson, R., Parsons, R., Rayhawk, S., Suttle, C. A., Rohwer, F. (2006) The marine viromes of four oceanic regions. PLoS Biol 11, e368.

    Article  CAS  Google Scholar 

  109. Vishivetskaya, T. A., Kathariou, S. (2005) Putative transposases conserved in Exiguobacterium isolates from ancient Siberian permafrost and from contemporary surface habitats. Appl Environ Microbiol 71, 6954–6962.

    Article  CAS  Google Scholar 

  110. Vepritskiy, A. A., Vitol, I. A., Nierzwicki-Bauer, S. A. (2002) Novel group I intron in the γ (UAA) gene of a γ-proteobacterium isolated from a deep subsurface environment. J Bacteriol 184, 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  111. Turmel, M. Mercier, J. P., Côté, V., Otis, C., Lemieux, C. (1995) Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion). Mol Biol Evol 12, 533–545.

    PubMed  Google Scholar 

  112. Reinhold-Hurek, B., Shub, D. A. (1992) Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357, 173–176.

    Article  CAS  PubMed  Google Scholar 

  113. Wall, J. D., Rapp-Giles, B. J., Rousset, M. (1993) Characterization of a small plasmid from Desulfovibrio desulfuricans and its use for shuttle vector construction. J Bacteriol 175, 4121–4128.

    CAS  PubMed  Google Scholar 

  114. Argyle, J. L., Rapp-Giles, B. J., Wall, J. D. (1992) Plasmid transfer by conjugation in Desulfovibrio desulfuricans. FEMS Microbiol Lett 73, 255–262.

    Article  CAS  PubMed  Google Scholar 

  115. Takami, H., Takaki, Y., Chee, G. J., Nishi, S., Shimamura, S., Suzuki, H., Matsui, S., Uchiyama, I. (2004) Thermoadaptation trait revealed by the genome sequence of thermophillic Geobacillus kaustophilus. Nucleic Acids Res 32, 6292–6303.

    Article  CAS  PubMed  Google Scholar 

  116. Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J. C., Glavina del Rio, T., Hammon, N., Israni, S., Dalin, E., Tice, H., Pitluck, S., Sims, D. R., Brettin, T., Bruce, D., Han, C., Tapia, R., Brainard, J., Schmutz, J., Larimer, F., Land, M., Hauser, L., Kyrpides, N., Mikhailova, N., Brettar, I., Klappenbach, J., Konstantinidis, K., Rodrigues, J., Tiedje, J., Richardson, P. (2007) Complete sequence of chromosome of Shewanella baltica OS155. Accession number NC_009052. US DOE Joint Genome Institute. Unpublished.

    Google Scholar 

  117. Copeland, A., Lucas, S., Lapidus, A., Barry, K., Glavina del Rio, T., Dalin, E., Tice, H., Pitluck, S., Sims, D., Brettin, T., Bruce, D., Detter, J. C., Han, C., Schmutz, J., Larimer, F., Land, M., Hauser, L., Kyrpides, N., Mikhailova, N., Brettar, I., Rodrigues, J., Konstantinidis, K., Tiedje, J., Richardson, P. (2007) Complete sequence of chromosome of Shewanella baltica OS185. Unpublished. Accession number NC_009665. US DOE Joint Genome Institute.

    Google Scholar 

  118. Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J. C., Glavina del Rio, T., Hammon, N., Israni, S., Dalin, E., Tice, H., Pitluck, S., Chain, P., Malfatti, S., Shin, M., Vergez, L., Schmutz, J., Larimer, F., Land, M., Hauser, L., Kyrpides, N., Lykidis, A., Tiedje, J., Richardson, P. (2007) Complete sequence of Shewanella sp. W3-18-1. Unpublished. Accession number NC_008750. US DOE Joint Genome Institute.

    Google Scholar 

  119. Butler, J. E., He, Q., Nevin, K. P., He., Z., Zhou, J., Lovley, D. R. (2007) Genomic and microarray analysis of aromatics degradation in Geobacter metallireducens and comparison to a Geobacter isolate from a contaminated field site. BMC Genomics 8, 180.

    Article  PubMed  CAS  Google Scholar 

  120. Coombs, J. M., Barkay, T. (2004) Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 70, 1698–1707.

    Article  CAS  PubMed  Google Scholar 

  121. Coombs, J. M., Barkay, T. (2005) New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl Environ Microbiol 71, 7083–7091.

    Article  CAS  PubMed  Google Scholar 

  122. Friedrich, M. W. (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-\(5^{\prime}\)-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184, 278–289.

    Article  CAS  PubMed  Google Scholar 

  123. Rees, G. N., Grassia, G. S., Sheehy, A. J., Dwivedi, P. P., Patel, B. K. C (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45, 85–89.

    Article  Google Scholar 

  124. Beeder, J., Torsvik, T., Lien, T. (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic suflate-reducing bacterium from oil field water. Arch Microbiol 164, 331–336.

    Article  CAS  PubMed  Google Scholar 

  125. Klein, M., Friedrich, M., Roger, A. J., Hugenoltz, P., Fishbain, S., Abicht, H., Blackall, L. L., Stahl, D. A., Wagner, M. (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol 183, 6028–6035.

    Article  CAS  PubMed  Google Scholar 

  126. Daumas, S., Cord-Ruwisch, R., Garcia, J. L. (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal groundwater. Antonie Van Leeuwenhoek 54, 165–178.

    Article  CAS  PubMed  Google Scholar 

  127. Smets, B. F., Morrow, J. B., Pinedo, C. A. (2003) Plasmid introduction in metal-stressed, subsurface-derived microcosms: plasmid fate and community response. Appl Environ Microbiol 69, 4087–4097.

    Article  CAS  PubMed  Google Scholar 

  128. Dash, P. K., Traxler, B. A., Panicker, M. M., Hackney, D. D., Minkley, E. G. Jr. (1992) Biochemical characterization of Esherichia coli DNA helicase I. Mol Microbiol 6, 1163–1172.

    Article  CAS  PubMed  Google Scholar 

  129. Maier, B., Potter, L., So, M., Seifert, H. S., Sheetz, M. P. (2002) Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci USA 99, 16012–16017.

    Article  CAS  PubMed  Google Scholar 

  130. Sanchez, H., Cardenas, P. P., Yoshimura, S. H., Takeyasu, K., Alonso, J. C. (2007) Dynamic structures of Bacillus subtilis RecN-DNA complexes. Nucleic Acids Res. 36, 110–120.

    Article  PubMed  CAS  Google Scholar 

  131. He, J., Ritalahti, K. M., Yang, K.-L., Koenigsberg, S. S., Löffler, F. E. (2003) Detoxification of vinyl chloride to ethane coupled to growth of an anaerobic bacterium. Nature 424, 62–65.

    Article  CAS  PubMed  Google Scholar 

  132. Weimer, P. J., Van Kavelaar, M. J., Michel, C. B., Ng, T. K. (1988) Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products in two-stage continuous cultures of Desulfovibrio desulfuricans. Appl Environ Microbiol 54, 386–396.

    CAS  PubMed  Google Scholar 

  133. Chivian, D., Alm, E. J., Brodie, E. L., Culley, D. E., Dehal, P. S., DeSantis, T. Z., Gihring, T. M., Lapidus, A., Lin, L.-H., Lowry, S. R., Moser, D. P., Richardson, P., Southam, G., Wanger, G., Pratt, L. M., Andersen, G. L., Hazen, T. C., Brockman, F. J., Arkin, A. P., Onstott, T. C. (2008) Environmental genomics reveals a single species ecosystem deep within the Earth. Unpublished. Accession number NC_010424. US DOE Joint Genome Institute (JGI-PGF).

    Google Scholar 

  134. Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R., Peacock, A., White, D. C., Lowe, M., Lovely, D. R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69, 5884–5891.

    Article  CAS  PubMed  Google Scholar 

  135. Fredrickson, J. K., Brockman, F. J., Workman, D. J., Li, S. W., Stevens, T. O. (1991) Isolation and characterization of a subsurface bacterium capable of growth on toluene, naphthalene, and other aromatic compounds. Appl Environ Microbiol 57, 796–803.

    CAS  PubMed  Google Scholar 

  136. Lien, T., Madsen, M., Rainey, F. A., Birkeland, N.-K. (1998) Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48, 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  137. Copeland, A., Lucas, S., Lapidus, A., Barry, K., Detter, J. C., Glavina del Rio, T., Hammon, N., Israni, S., Dalin, E., Tice, H., Pitluck, S., Chain, P., Malfatti, S., Shin, M., Vergez, L., Schmutz, J., Larimer, F., Land, M., Hauser, L., Kyrpides, N., Mikhailova, N., Romine, M. F., Fredrickson, J., Tiedje, J., Richardson, P. (2007) Complete sequence of Shewanella putrefaciens CN-32. Unpublished. Accession number NC_009438. US DOE Joint Genome Institute.

    Google Scholar 

  138. Takahata, Y., Nishijima, M., Hoaki, T., Maruyama, T. (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51, 1901–1909.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Coombs, J.M. (2009). Potential for Horizontal Gene Transfer in Microbial Communities of the Terrestrial Subsurface. In: Gogarten, M.B., Gogarten, J.P., Olendzenski, L.C. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 532. Humana Press. https://doi.org/10.1007/978-1-60327-853-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-853-9_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-852-2

  • Online ISBN: 978-1-60327-853-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics