Skip to main content

A Zinc—Potassium Continuum in Neuronal Apoptosis

  • Chapter
Brain Hypoxia and Ischemia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Intraneuronal zinc homeostasis is tightly regulated by a variety of specialized ionic transport mechanisms, metal binding proteins, and organelle com-partmentalization. Dysregulation of these processes by pathophysiological conditions, especially those in which reactive oxygen and nitrogen species (ROS, RNS) have been implicated, is central to the progression of neuronal injury. In addition to disruption of zinc homeostatic mechanisms, a reduction of intracellular ionic strength via enhanced potassium efflux is a critical and perhaps requisite mediator of apoptotic cell death induced by lethal insults to the brain. In this chapter, we describe the manner by which the cellular dysregulation of these two essential ions, zinc and potassium, lies along a signaling continuum leading to the demise of central neurons. By reviewing the current status of the field and presenting new information, we detail the molecular mechanisms linking intracellular zinc liberation to cellular potassium efflux in acute neuronal injury, such as ischemia. The complete characterization of this potentially ubiquitous cell death signaling cascade will likely provide novel therapeutic targets for cerebral ischemia and, possibly, other forms of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frederickson CJ, Koh J Y, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci 2005;6:449–62.

    CAS  PubMed  Google Scholar 

  2. Pearce LL, Wasserloos K, St Croix CM, Gandley R, Levitan ES, Pitt BR. Metallothionein, nitric oxide and zinc homeostasis in vascular endothelial cells. J Nutr 2000;130:1467S–70S.

    CAS  PubMed  Google Scholar 

  3. Yamasaki S, Sakata-Sogawa K, Hasegawa A, et al. Zinc is a novel intracellular second messenger. J Cell Biol 2007;177:637–45.

    CAS  PubMed  Google Scholar 

  4. Frederickson CJ, Bush AI. Synaptically released zinc: physiological functions and pathological effects. Biometals 2001;14:353–66.

    CAS  PubMed  Google Scholar 

  5. Weiss JH, Sensi SL, Koh J Y. Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 2000;21:395–401.

    CAS  PubMed  Google Scholar 

  6. Frederickson CJ, Hernandez MD, McGinty JF. Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 1989;480:317–21.

    CAS  PubMed  Google Scholar 

  7. Sensi SL, Canzoniero LM, Yu SP, et al. Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 1997;17:9554–64.

    CAS  PubMed  Google Scholar 

  8. Choi DW, Koh JY. Zinc and brain injury. Annu Rev Neurosci 1998;21:347–75.

    CAS  PubMed  Google Scholar 

  9. Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL. Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis 2005;8:93–108; discussion 209–15.

    CAS  PubMed  Google Scholar 

  10. Pal S, He K, Aizenman E. Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link? Pflugers Arch 2004;448:296–303.

    CAS  PubMed  Google Scholar 

  11. Panayiotidis MI, Bortner CD, Cidlowski JA. On the mechanism of ionic regulation of apoptosis: would the Na+/K+-ATPase please stand up? Acta Physiol 2006;187:205–15.

    CAS  Google Scholar 

  12. Yu SP. Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/ hybrid cell death. Biochem Pharmacol 2003;66:1601–9.

    CAS  PubMed  Google Scholar 

  13. Bortner CD, Cidlowski JA. Cell shrinkage and monovalent cation fluxes: role in apoptosis. Arch Biochem Biophys 2007;462:176–88.

    CAS  PubMed  Google Scholar 

  14. Yokoyama M, Koh J, Choi DW. Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 1986;71:351–5.

    CAS  PubMed  Google Scholar 

  15. Choi DW, Yokoyama M, Koh J. Zinc neurotoxiCity in cortical cell culture. Neuroscience 1988;24:67–79.

    CAS  PubMed  Google Scholar 

  16. Weiss JH, Hartley DM, Koh J Y, Choi DW. AMPA receptor activation potentiates zinc neuro-toxiCity. Neuron 1993;10:43–9.

    CAS  PubMed  Google Scholar 

  17. Koh J Y, Choi DW. Zinc toxiCity on cultured cortical neurons: involvement of N-methyl- d-aspartate receptors. Neuroscience 1994;60:1049–57.

    CAS  PubMed  Google Scholar 

  18. Jia Y, Jeng JM, Sensi SL, Weiss JH. Zn2+ currents are mediated by calcium-permeable AMPA/ kainate channels in cultured murine hippocampal neurones. J Physiol 2002;543:35–48.

    CAS  PubMed  Google Scholar 

  19. Yin HZ, Sensi SL, Ogoshi F, Weiss JH. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hip-pocampal pyramidal neurons. J Neurosci 2002;22:1273–9.

    CAS  PubMed  Google Scholar 

  20. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 2005;102:12230–5.

    CAS  PubMed  Google Scholar 

  21. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 1996;272:1013–16.

    CAS  PubMed  Google Scholar 

  22. Frederickson CJ, Rampy BA, Reamy-Rampy S, Howell GA. Distribution of histochemically reactive zinc in the forebrain of the rat. J Chem Neuroanat 1992;5:521–30.

    CAS  PubMed  Google Scholar 

  23. Assaf SY, Chung SH. Release of endogenous Zn2+ from brain tissue during activity. Nature 1984;308:734–6.

    CAS  PubMed  Google Scholar 

  24. Howell GA, Welch MG, Frederickson CJ. Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 1984;308:736–8.

    CAS  PubMed  Google Scholar 

  25. Aniksztejn L, Charton G, Ben-Ari Y. Selective release of endogenous zinc from the hippo-campal mossy fibers in situ. Brain Res 1987;404:58–64.

    CAS  PubMed  Google Scholar 

  26. Frederickson CJ, Hernandez MD, Goik SA, Morton JD, McGinty JF. Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res 1988;446:383–6.

    CAS  PubMed  Google Scholar 

  27. Vogt K, Mellor J, Tong G, Nicoll R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 2000;26:187–96.

    CAS  PubMed  Google Scholar 

  28. Suh SW, Garnier P, Aoyama K, Chen Y, Swanson RA. Zinc release contributes to hypoglycemia-induced neuronal death. Neurobiol Dis 2004;16:538–45.

    CAS  PubMed  Google Scholar 

  29. Wei G, Hough CJ, Li Y, Sarvey JM. Characterization of extracellular accumulation of Zn2+ during ischemia and reperfusion of hippocampus slices in rat. Neuroscience 2004;125:867–77.

    CAS  PubMed  Google Scholar 

  30. Frederickson CJ, Giblin LJ, III, Balaji RV, et al. Synaptic release of zinc from brain slices: factors governing release, imaging, and accurate calculation of concentration. J Neurosci Methods 2006;154:19–29.

    CAS  PubMed  Google Scholar 

  31. Kay AR. Evidence for chelatable zinc in the extracellular space of the hippocampus, but little evidence for synaptic release of Zn. J Neurosci 2003;23:6847–55.

    CAS  PubMed  Google Scholar 

  32. Lavoie N, Peralta MR, III, Chiasson M, et al. Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 2007;578:275–89.

    CAS  PubMed  Google Scholar 

  33. Sloviter RS. A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Res 1985;330:150–3.

    CAS  PubMed  Google Scholar 

  34. Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH. Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 1990;109:247–52.

    CAS  PubMed  Google Scholar 

  35. Lee JY, Cole TB, Palmiter RD, Koh J Y. Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 2000;20:RC79.

    CAS  PubMed  Google Scholar 

  36. Calderone A, Jover T, Mashiko T, et al. Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death. J Neurosci 2004;24:9903–13.

    CAS  PubMed  Google Scholar 

  37. Choi SM, Choi KO, Lee N, Oh M, Park H. The zinc chelator, N,N,N′,N′-tetrakis (2-pyridyl-methyl) ethylenediamine, increases the level of nonfunctional HIF-1alpha protein in normoxic cells. Biochem Biophys Res Commun 2006;343:1002–8.

    CAS  PubMed  Google Scholar 

  38. Suh SW, Chen JW, Motamedi M, et al. Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 2000;852:268–73.

    CAS  PubMed  Google Scholar 

  39. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M. Brain, aging and neurodegen-eration: role of zinc ion availability. Prog Neurobiol 2005;75:367–90.

    CAS  PubMed  Google Scholar 

  40. Kwak S, Weiss JH. Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 2006;16:281–7.

    CAS  PubMed  Google Scholar 

  41. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science 1996;271:1081–5.

    CAS  PubMed  Google Scholar 

  42. Maret W. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 2006;8:1419–41.

    CAS  PubMed  Google Scholar 

  43. Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thy-mocyte nuclei leads to cell death. J Immunol 1984;132:38–42.

    CAS  PubMed  Google Scholar 

  44. Manev H, Kharlamov E, Uz T, Mason RP, Cagnoli CM. Characterization of zinc-induced neuronal death in primary cultures of rat cerebellar granule cells. Exp Neurol 1997;146: 171–8.

    CAS  PubMed  Google Scholar 

  45. Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn2+ influx through Ca2+ permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 1999;96:2414–19.

    CAS  PubMed  Google Scholar 

  46. Sensi SL, Yin HZ, Weiss JH. AMPA/kainate receptor-triggered Zn2+ entry into cortical neurons induces mitochondrial Zn2+ uptake and persistent mitochondrial dysfunction. Eur J Neurosci 2000;12:3813–18.

    CAS  PubMed  Google Scholar 

  47. Kleiner D. The effect of Zn2+ ions on mitochondrial electron transport. Arch Biochem Biophys 1974;165:121–5.

    CAS  PubMed  Google Scholar 

  48. Link TA, von Jagow G. Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group. J Biol Chem 1995;270:25001–6.

    CAS  PubMed  Google Scholar 

  49. Brown MD, Trounce IA, Jun AS, Allen JC, Wallace DC. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber's hereditary optic neuropathy mitochondrial DNA mutation. J Biol Chem 2000;275:39831–6.

    CAS  PubMed  Google Scholar 

  50. Wudarczyk J, Debska G, Lenartowicz E. Zinc as an inducer of the membrane permeability transition in rat liver mitochondria. Arch Biochem Biophys 1999;363:1–8.

    CAS  PubMed  Google Scholar 

  51. Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH. Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem 2001;276:47524–9.

    CAS  PubMed  Google Scholar 

  52. Malaiyandi LM, Honick AS, Rintoul GL, Wang QJ, Reynolds IJ. Zn2+ inhibits mitochon-drial movement in neurons by phosphatidylinositol 3-kinase activation. J Neurosci 2005; 25:9507–14.

    CAS  PubMed  Google Scholar 

  53. Bonanni L, Chachar M, Jover-Mengual T, et al. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain. J Neurosci 2006;26:6851–62.

    CAS  PubMed  Google Scholar 

  54. Sheline CT, Behrens MM, Choi DW. Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J Neurosci 2000;20:3139–46.

    CAS  PubMed  Google Scholar 

  55. Kim CH, Kim JH, Moon SJ, et al. Pyrithione, a zinc ionophore, inhibits NF-kappaB activation. Biochem Biophys Res Commun 1999;259:505–9.

    CAS  PubMed  Google Scholar 

  56. Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: mediation by free radicals. Neuroscience 1999;89:175–82.

    CAS  PubMed  Google Scholar 

  57. McLaughlin B, Pal S, Tran MP, et al. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 2001;21:3303–11.

    CAS  PubMed  Google Scholar 

  58. Du S, McLaughlin B, Pal S, Aizenman E. In vitro neurotoxiCity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. J Neurosci 2002;22:7408–16.

    CAS  PubMed  Google Scholar 

  59. Zhang Y, Wang H, Li J, et al. Peroxynitrite-induced neuronal apoptosis is mediated by intra-cellular zinc release and 12-lipoxygenase activation. J Neurosci 2004;24:10616–27.

    CAS  PubMed  Google Scholar 

  60. Bossy-Wetzel E, Talantova MV, Lee WD, et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 2004;41:351–65.

    CAS  PubMed  Google Scholar 

  61. Zhang CF, Yang P. Zinc-induced aggregation of Abeta (10–21) potentiates its action on voltage-gated potassium channel. Biochem Biophys Res Commun 2006;345:43–9.

    CAS  PubMed  Google Scholar 

  62. Atar D, Backx PH, Appel MM, Gao WD, Marban E. Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 1995; 270:2473–7.

    CAS  PubMed  Google Scholar 

  63. Park JA, Koh JY. Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J Neurochem 1999;73:450–6.

    CAS  PubMed  Google Scholar 

  64. Csermely P, Szamel M, Resch K, Somogyi J. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J Biol Chem 1988; 263:6487–90.

    CAS  PubMed  Google Scholar 

  65. Noh KM, Kim YH, Koh JY. Mediation by membrane protein kinase C of zinc-induced oxida-tive neuronal injury in mouse cortical cultures. J Neurochem 1999;72:1609–16.

    CAS  PubMed  Google Scholar 

  66. Kim YH, Koh J Y. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 2002;177:407–18.

    CAS  PubMed  Google Scholar 

  67. Noh KM, Koh JY. Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 2000;20:RC111.

    CAS  PubMed  Google Scholar 

  68. Spence MW, Byers DM, Palmer FB, Cook HW. A new Zn2+-stimulated sphingomyelinase in fetal bovine serum. J Biol Chem 1989;264:5358–63.

    CAS  PubMed  Google Scholar 

  69. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994;269:3125–8.

    CAS  PubMed  Google Scholar 

  70. Brugg B, Michel PP, Agid Y, Ruberg M. Ceramide induces apoptosis in cultured mesen-cephalic neurons. J Neurochem 1996;66:733–9.

    CAS  PubMed  Google Scholar 

  71. Schissel SL, Schuchman EH, Williams KJ, Tabas I. Zn2+-stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 1996;271:18431–6.

    CAS  PubMed  Google Scholar 

  72. Park JA, Lee JY, Sato TA, Koh JY. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J Neurosci 2000;20:9096–103.

    CAS  PubMed  Google Scholar 

  73. Sheline CT, Wang H, Cai AL, Dawson VL, Choi DW. Involvement of poly ADP ribosyl polymerase-1 in acute but not chronic zinc toxiCity. Eur J Neurosci 2003;18:1402–9.

    PubMed  Google Scholar 

  74. Zalewski PD, Forbes IJ, Betts WH. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J 1993;296 (Part 2):403–8.

    CAS  PubMed  Google Scholar 

  75. Fraker PJ, Telford WG. A reappraisal of the role of zinc in life and death decisions of cells. Proc Soc Exp Biol Med 1997;215:229–36.

    CAS  PubMed  Google Scholar 

  76. Perry DK, Smyth MJ, Stennicke HR, et al. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem 1997;272: 18530–3.

    CAS  PubMed  Google Scholar 

  77. Chai F, Truong-Tran AQ, Ho LH, Zalewski PD. Regulation of caspase activation and apopto-sis by cellular zinc fluxes and zinc deprivation: a review. Immunol Cell Biol 1999;77:272–8.

    CAS  PubMed  Google Scholar 

  78. Ho LH, Ratnaike RN, Zalewski PD. Involvement of intracellular labile zinc in suppression of DEVD-caspase activity in human neuroblastoma cells. Biochem Biophys Res Commun 2000;268:148–54.

    CAS  PubMed  Google Scholar 

  79. Schrantz N, Auffredou MT, Bourgeade MF, Besnault L, Leca G, Vazquez A. Zinc-mediated regulation of caspases activity: dose-dependent inhibition or activation of caspase-3 in the human Burkitt lymphoma B cells (Ramos). Cell Death Differ 2001;8:152–61.

    CAS  PubMed  Google Scholar 

  80. Marini M, Frabetti F, Canaider S, Dini L, Falcieri E, Poirier GG. Modulation of caspase-3 activity by zinc ions and by the cell redox state. Exp Cell Res 2001;266:323–32.

    CAS  PubMed  Google Scholar 

  81. Ahn YH, Kim YH, Hong SH, Koh JY. Depletion of intracellular zinc induces protein synthesis-dependent neuronal apoptosis in mouse cortical culture. Exp Neurol 1998;154:47–56.

    CAS  PubMed  Google Scholar 

  82. Adler M, Shafer H, Hamilton T, Petrali JP. Cytotoxic actions of the heavy metal chelator TPEN on NG108-15 neuroblastoma-glioma cells. Neurotoxicology 1999;20:571–82.

    CAS  PubMed  Google Scholar 

  83. Virag L, Szabo C. Inhibition of poly(ADP-ribose) synthetase (PARS) and protection against peroxynitrite-induced cytotoxiCity by zinc chelation. Br J Pharmacol 1999;126:769–77.

    CAS  PubMed  Google Scholar 

  84. Bancila V, Nikonenko I, Dunant Y, Bloc A. Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J Neurochem 2004;90:1243–50.

    CAS  PubMed  Google Scholar 

  85. Cote A, Chiasson M, Peralta MR, III, Lafortune K, Pellegrini L, Toth K. Cell type-specific action of seizure-induced intracellular zinc accumulation in the rat hippocampus. J Physiol 2005;566:821–37.

    CAS  PubMed  Google Scholar 

  86. Hyun HJ, Sohn JH, Ha DW, Ahn YH, Koh JY, Yoon YH. Depletion of intracellular zinc and copper with TPEN results in apoptosis of cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2001;42:460–5.

    CAS  PubMed  Google Scholar 

  87. Lipton SA, Kater SB. Neurotransmitter regulation of neuronal outgrowth, plastiCity and survival. Trends Neurosci 1989;12:265–70.

    CAS  PubMed  Google Scholar 

  88. Choi DW. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 1995;18:58–60.

    CAS  PubMed  Google Scholar 

  89. Colvin RA, Fontaine CP, Laskowski M, Thomas D. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol 2003;479:171–85.

    CAS  PubMed  Google Scholar 

  90. Hershfinkel M, Moran A, Grossman N, Sekler I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates ion transport. Proc Natl Acad Sci USA 2001;98: 11749–54.

    CAS  PubMed  Google Scholar 

  91. Hershfinkel M, Silverman WF, Sekler I. The zinc sensing receptor, a link between zinc and cell signaling. Mol Med 2007;13:331–6.

    CAS  PubMed  Google Scholar 

  92. Sensi SL, Ton-That D, Weiss JH, Rothe A, Gee KR. A new mitochondrial fluorescent zinc sensor. Cell Calcium 2003;34:281–4.

    CAS  PubMed  Google Scholar 

  93. McMahon RJ, Cousins RJ. Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 1998;95:4841–6.

    CAS  PubMed  Google Scholar 

  94. Liuzzi JP, Cousins RJ. Mammalian zinc transporters. Annu Rev Nutr 2004;24:151–72.

    CAS  PubMed  Google Scholar 

  95. Sekler I, Sensi SL, Hershfinkel M, Silverman WF. Mechanism and regulation of cellular zinc transport. Mol Med 2007;13:337–43.

    CAS  PubMed  Google Scholar 

  96. Choi DW. Excitotoxic cell death. J Neurobiol 1992;23:1261–76.

    CAS  PubMed  Google Scholar 

  97. Stork CJ, Li Y V. Intracellular zinc elevation measured with a “calcium-specific” indicator during ischemia and reperfusion in rat hippocampus: a question on calcium overload. J Neurosci 2006;26:10430–7.

    CAS  PubMed  Google Scholar 

  98. Berg JM. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem 1990;265:6513–16.

    CAS  PubMed  Google Scholar 

  99. Maret W, Krezel A. Cellular zinc and redox buffering capaCity of metallothionein/thionein in health and disease. Mol Med 2007;13:371–5.

    CAS  PubMed  Google Scholar 

  100. Korichneva I. Zinc dynamics in the myocardial redox signaling network. Antioxid Redox Signal 2006;8:1707–21.

    CAS  PubMed  Google Scholar 

  101. Haase H, Rink L. Signal transduction in monocytes: the role of zinc ions. Biometals 2007;20:579–85.

    CAS  PubMed  Google Scholar 

  102. Maret W, Vallee BL. Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 1998;95:3478–82.

    CAS  PubMed  Google Scholar 

  103. Jiang LJ, Maret W, Vallee BL. The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci USA 1998;95:3483–8.

    CAS  PubMed  Google Scholar 

  104. Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 2000;75:1878–88.

    CAS  PubMed  Google Scholar 

  105. Katakai K, Liu J, Nakajima K, Keefer LK, Waalkes MP. Nitric oxide induces metal-lothionein (MT) gene expression apparently by displacing zinc bound to MT. Toxicol Lett 2001;119:103–8.

    CAS  PubMed  Google Scholar 

  106. Frederickson CJ, Cuajungco MP, LaBuda CJ, Suh SW. Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience 2002;115:471–4.

    CAS  PubMed  Google Scholar 

  107. Frederickson CJ, Maret W, Cuajungco MP. Zinc and excitotoxic brain injury: a new model. Neuroscientist 2004;10:18–25.

    CAS  PubMed  Google Scholar 

  108. Knapp LT, Klann E. Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem 2000;275:24136–45.

    CAS  PubMed  Google Scholar 

  109. Cima RR, Dubach JM, Wieland AM, Walsh BM, Soybel DI. Intracellular Ca(2+) and Zn(2+) signals during monochloramine-induced oxidative stress in isolated rat colon crypts. Am J Physiol Gastrointest Liver Physiol 2006;290:G250–G261.

    CAS  PubMed  Google Scholar 

  110. Kroncke KD. Cellular stress and intracellular zinc dyshomeostasis. Arch Biochem Biophys 2007;463:183–7.

    PubMed  Google Scholar 

  111. Hao Q, Maret W. Aldehydes release zinc from proteins. A pathway from oxidative stress/ lipid peroxidation to cellular functions of zinc. FEBS J 2006;273:4300–10.

    CAS  PubMed  Google Scholar 

  112. Maret W. Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc Natl Acad Sci USA 1994;91:237–41.

    CAS  PubMed  Google Scholar 

  113. Maret W. Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem Int 1995;27:111–17.

    CAS  PubMed  Google Scholar 

  114. Land PW, Aizenman E. Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur J Neurosci 2005;21:647–57.

    PubMed  Google Scholar 

  115. Lee J Y, Hwang JJ, Park MH, Koh J Y. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain. Eur J Neurosci 2006;23:435–42.

    CAS  PubMed  Google Scholar 

  116. Aizenman E, Sinor JD, Brimecombe JC, Herin GA. Alterations of N-methyl-d-aspartate receptor properties after chemical ischemia. J Pharmacol Exp Ther 2000;295:572–7.

    CAS  PubMed  Google Scholar 

  117. Aras MA, Aizenman E. Obligatory role of ASK1 in the apoptotic surge of K+ currents. Neurosci Lett 2005;387:136–40.

    CAS  PubMed  Google Scholar 

  118. Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA. Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 2007;13:350–5.

    CAS  PubMed  Google Scholar 

  119. Sensi SL, Jeng JM. Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr Mol Med 2004;4:87–111.

    CAS  PubMed  Google Scholar 

  120. Redman PT, Jefferson BS, Ziegler CB, et al. A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxiCity. Neuroscience 2006;143:1–6.

    CAS  PubMed  Google Scholar 

  121. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. Mediation of neuronal apopto-sis by Kv2.1-encoded potassium channels. J Neurosci 2003;23:4798–802.

    CAS  PubMed  Google Scholar 

  122. Pal SK, Takimoto K, Aizenman E, Levitan ES. Apoptotic surface delivery of K+ channels. Cell Death Differ 2006;13:661–7.

    CAS  PubMed  Google Scholar 

  123. Redman PT, He K, Hartnett KA, et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc Natl Acad Sci USA 2007;104:3568–73.

    CAS  PubMed  Google Scholar 

  124. Obenauer JC, Cantley LC, Yaffe MB. Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 2003;31:3635–41.

    CAS  PubMed  Google Scholar 

  125. Park KS, Mohapatra DP, Misonou H, Trimmer JS. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 2006;313:976–9.

    CAS  PubMed  Google Scholar 

  126. Du J, Haak LL, Phillips-Tansey E, Russell JT, McBain CJ. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K+ channel subunit Kv2.1. J Physiol 2000;522 (Part 1):19–31.

    CAS  PubMed  Google Scholar 

  127. Misonou H, Mohapatra DP, Park EW, et al. Regulation of ion channel localization and phos-phorylation by neuronal activity. Nat Neurosci 2004;7:711–18.

    CAS  PubMed  Google Scholar 

  128. Misonou H, Mohapatra DP, Trimmer JS. Kv2.1: a voltage-gated k+ channel critical to dynamic control of neuronal excitability. Neurotoxicology 2005;26:743–52.

    CAS  PubMed  Google Scholar 

  129. Malin SA, Nerbonne JM. Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci 2002;22: 10094–105.

    CAS  PubMed  Google Scholar 

  130. Misonou H, Mohapatra DP, Menegola M, Trimmer JS. Calcium- and metabolic state-dependent modulation of the voltage-dependent Kv2.1 channel regulates neuronal excitability in response to ischemia. J Neurosci 2005;25:11184–93.

    CAS  PubMed  Google Scholar 

  131. Mohapatra DP, Park KS, Trimmer JS. Dynamic regulation of the voltage-gated Kv2.1 potassium channel by multisite phosphorylation. Biochem Soc Trans 2007;35:1064–8.

    CAS  PubMed  Google Scholar 

  132. Michaelevski I, Chikvashvili D, Tsuk S, et al. Direct interaction of target SNAREs with the Kv2.1 channel. Modal regulation of channel activation and inactivation gating. J Biol Chem 2003;278:34320–30.

    CAS  PubMed  Google Scholar 

  133. Lauritzen I, De Weille JR, Lazdunski M. The potassium channel opener (-)-cromakalim prevents glutamate-induced cell death in hippocampal neurons. J Neurochem 1997;69: 1570–9.

    CAS  PubMed  Google Scholar 

  134. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett 2002;186:99–105.

    CAS  PubMed  Google Scholar 

  135. Hegle AP, Marble DD, Wilson GF. A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci USA 2006;103:2886–91.

    CAS  PubMed  Google Scholar 

  136. Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW. Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem 1999;73:933–41.

    CAS  PubMed  Google Scholar 

  137. Bortner CD, Cidlowski JA. Caspase independent/dependent regulation of K(+), cell shrinkage, and mitochondrial membrane potential during lymphocyte apoptosis. J Biol Chem 1999; 274:21953–62.

    CAS  PubMed  Google Scholar 

  138. Hughes FM, Jr., Cidlowski JA. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 1999;39:157–71.

    CAS  PubMed  Google Scholar 

  139. Cain K, Langlais C, Sun XM, Brown DG, Cohen GM. Physiological concentrations of K+ inhibit cytochrome c-dependent formation of the apoptosome. J Biol Chem 2001;276: 41985–90.

    CAS  PubMed  Google Scholar 

  140. Brevnova EE, Platoshyn O, Zhang S, Yuan JX. Overexpression of human KCNA5 increases IK V and enhances apoptosis. Am J Physiol Cell Physiol 2004;287:C715–C722.

    CAS  PubMed  Google Scholar 

  141. Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997;278:114–17.

    CAS  PubMed  Google Scholar 

  142. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW. Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 1998;5:81–8.

    CAS  PubMed  Google Scholar 

  143. Xiao H, Dai X, Mao X. [Inhibition of voltage-activated outward delayed rectifier potassium channel currents in dorsal root ganglion neurons of rats by lead]. Zhonghua Yu Fang Yi Xue Za Zhi 2001;35:108–10.

    CAS  PubMed  Google Scholar 

  144. Wang X, Xiao AY, Ichinose T, Yu SP. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 2000;295:524–30.

    CAS  PubMed  Google Scholar 

  145. Wei L, Xiao AY, Jin C, Yang A, Lu ZY, Yu SP. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 2004;448:325–34.

    CAS  PubMed  Google Scholar 

  146. Knoch ME, Hartnett KA, Hara H, Kandler K, Aizenman E. Microglia induce neurotoxiCity via intraneuronal Zn(2+) release and a K(+) current surge. Glia 2008;56:89–96.

    PubMed  Google Scholar 

  147. Boer K, Spliet WG, van Rijen PC, Redeker S, Troost D, Aronica E. Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 2006;173:188–95.

    CAS  PubMed  Google Scholar 

  148. De Simoni MG, Perego C, Ravizza T, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000;12:2623–33.

    PubMed  Google Scholar 

  149. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 2003;100:13632–7.

    CAS  PubMed  Google Scholar 

  150. Milligan CE, Levitt P, Cunningham TJ. Brain macrophages and microglia respond differently to lesions of the developing and adult visual system. J Comp Neurol 1991;314:136–46.

    CAS  PubMed  Google Scholar 

  151. Rizzi M, Perego C, Aliprandi M, et al. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis 2003;14:494–503.

    CAS  PubMed  Google Scholar 

  152. Wang MJ, Lin SZ, Kuo JS, et al. Urocortin modulates inflammatory response and neurotox-iCity induced by microglial activation. J Immunol 2007;179:6204–14.

    CAS  PubMed  Google Scholar 

  153. Milligan CE, Cunningham TJ, Levitt P. Differential immunochemical markers reveal the normal distribution of brain macrophages and microglia in the developing rat brain. J Comp Neurol 1991;314:125–35.

    CAS  PubMed  Google Scholar 

  154. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron 2004;41:535–47.

    CAS  PubMed  Google Scholar 

  155. Hribar M, Bloc A, Medilanski J, Nusch L, Eder-Colli L. Voltage-gated K+ current: a marker for apoptosis in differentiating neuronal progenitor cells? Eur J Neurosci 2004;20:635–48.

    PubMed  Google Scholar 

  156. Chi XX, Xu ZC. Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia. J Neurophysiol 2000;84:2834–43.

    CAS  PubMed  Google Scholar 

  157. Deng P, Pang ZP, Zhang Y, Xu ZC. Increase of delayed rectifier potassium currents in large aspiny neurons in the neostriatum following transient forebrain ischemia. Neuroscience 2005; 131:135–46.

    CAS  PubMed  Google Scholar 

  158. Underwood DC, Osborn RR, Kotzer CJ, et al. SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther 2000;293:281–8.

    CAS  PubMed  Google Scholar 

  159. Legos JJ, McLaughlin B, Skaper SD, et al. The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Eur J Pharmacol 2002;447: 37–42.

    CAS  PubMed  Google Scholar 

  160. Pearce DA, Jotterand N, Carrico IS, Imperiali B. Derivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systems. J Am Chem Soc 2001;123:5160–1.

    CAS  PubMed  Google Scholar 

  161. Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxiCity in a neu-ronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 1989;2:1547–58.

    CAS  PubMed  Google Scholar 

  162. Stanciu M, Wang Y, Kentor R, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxiCity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 2000;275:12200–6.

    CAS  PubMed  Google Scholar 

  163. Lee JY, Mook-Jung I, Koh J Y. Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 1999;19:RC10.

    PubMed  Google Scholar 

  164. Danscher G, Jensen KB, Frederickson CJ, et al. Increased amount of zinc in the hippocampus and amygdala of Alzheimer's diseased brains: a proton-induced X-ray emission spectroscopic analysis of cryostat sections from autopsy material. J Neurosci Methods 1997; 76:53–9.

    CAS  PubMed  Google Scholar 

  165. Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer's disease Abeta amyloid deposits by biometal depletion. J Biol Chem 1999;274:23223–8.

    CAS  PubMed  Google Scholar 

  166. Regland B, Lehmann W, Abedini I, et al. Treatment of Alzheimer's disease with clioquinol. Dement Geriatr Cogn Disord 2001;12:408–14.

    CAS  PubMed  Google Scholar 

  167. Ritchie CW, Bush AI, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydro-xyquin (clioquinol) targeting Abeta amyloid deposition and toxiCity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003;60:1685–91.

    PubMed  Google Scholar 

  168. Hensley K, Hall N, Subramaniam R, et al. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65:2146–56.

    CAS  PubMed  Google Scholar 

  169. Friedlich AL, Lee J Y, van Groen T, et al. Neuronal zinc exchange with the blood vessel wall promotes cerebral amyloid angiopathy in an animal model of Alzheimer's disease. J Neurosci 2004;24:3453–9.

    CAS  PubMed  Google Scholar 

  170. Huang X, Atwood CS, Hartshorn MA, et al. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999;38:7609–16.

    CAS  PubMed  Google Scholar 

  171. Yu HB, Li ZB, Zhang HX, Wang XL. Role of potassium channels in Abeta(1–40)-activated apoptotic pathway in cultured cortical neurons. J Neurosci Res 2006;84:1475–84.

    CAS  PubMed  Google Scholar 

  172. Pannaccione A, Boscia F, Scorziello A, et al. Up-regulation and increased activity of KV3.4 channels and their accessory subunit MinK-related peptide 2 induced by amyloid peptide are involved in apoptotic neuronal death. Mol Pharmacol 2007;72:665–73.

    CAS  PubMed  Google Scholar 

  173. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 2005;8:1742–51.

    CAS  PubMed  Google Scholar 

  174. Dhanasekaran M, Albano CB, Pellet L, et al. Role of lipoamide dehydrogenase and metallothionein on 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced neurotoxiCity. Neurochem Res 2008;33:980–984.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an American Heart Association Predoctoral Fellowship to Patrick Redman, an American Heart Association Postdoctoral Fellowship to Megan Knoch, and by NIH grant NS043227 to Elias Aizenman. The technical expertise of Karen Hartnett is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Redman, P., Knoch, M., Aizenman, E. (2009). A Zinc—Potassium Continuum in Neuronal Apoptosis. In: Haddad, G.G., Yu, S.P. (eds) Brain Hypoxia and Ischemia. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-579-8_6

Download citation

Publish with us

Policies and ethics