Skip to main content

Radicals Attack the Ear The Toll: A Loss of Hearing

  • Chapter
  • First Online:
  • 1235 Accesses

Abstract

Transduction of sound stimuli into nerve impulses in the cochlea begins with an initial passive mechanical stage, the energy for which comes from the sound stimulus itself. In the normal cochlea, this passive event initiates active components of transduction, the energy for which comes from energy metabolism, and involves creation and maintenance of electrochemical gradients. These gradients must be maintained to enable continued transduction. This metabolic activity leads to the release of reactive oxygen species (ROS) and other free radicals, which, in the course of transduction of conventional sound intensities, is balanced by the endogenous antioxidant compounds present in the cochlear tissues. However, during acoustic overstimulation, the elevated levels of the highly reactive ROS molecules produced exceed the inherent levels of antioxidants present in the tissue, and this can lead to structural damage in the cochlea, with cell death and hearing loss. It has been suggested that such mechanisms are also involved in the hearing loss caused by ototoxic drugs and by aging (presbyacusis). Several strategies can be used to reduce the resulting hearing loss, whether induced by noise exposure, by ototoxic drugs, or by aging. These approaches include induction of elevated levels of endogenous antioxidants in the cochlea, before the noise exposure. Exogenous antioxidant drugs can also be administered before the exposure. An additional therapeutic strategy involves “rescue” by administering antioxidant drugs after the noise exposure. These therapeutic strategies are reviewed and evaluated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Morata TC. Young people: their noise and music exposures and the risk of hearing loss. Int J Audiol. 2007;46:111–2.

    Article  PubMed  Google Scholar 

  2. Saunders JC, Dear SP, Schneider ME. The anatomical consequences of acoustic injury: a review and tutorial. J Acoust Soc Am. 1985;78:833–60.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad M, Bohne BA, Harding GW. An in vivo tracer study of noise-induced damage to the reticular lamina. Hear Res. 2003;175:82–100.

    Article  PubMed  Google Scholar 

  4. Yamashita D, Jiang HY, Schacht J, Miller JM. Delayed production of free radicals following noise exposure. Brain Res. 2004;1019:201–9.

    Article  CAS  PubMed  Google Scholar 

  5. Ohinata Y, Miller JM, Altschuler RA, Schacht J. Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res. 2000;878:163–73.

    Article  CAS  PubMed  Google Scholar 

  6. Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear. 2006;27:1–19.

    Article  PubMed  Google Scholar 

  7. Kopke R, Allen KA, Henderson D, Hoffer M, Frenz D, Van de WT. A radical demise. Toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci. 1999;884:171–91.

    Article  CAS  PubMed  Google Scholar 

  8. Perez R, Freeman S, Sohmer H, Sichel JY. Vestibular and cochlear ototoxicity of topical antiseptics assessed by evoked potentials. Laryngoscope. 2000;110:1522–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sohmer H, Elidan J, Plotnik M et al. Effect of noise on the vestibular system: vestibular evoked potential studies in rats. Noise Health. 1999;2:41–52.

    PubMed  Google Scholar 

  10. Biron A, Freeman S, Sichel JY, Sohmer H. The effect of noise exposure in the presence of canal fenestration on the amplitude of short-latency vestibular evoked potentials. Arch Otolaryngol Head Neck Surg. 2002;128:544–8.

    PubMed  Google Scholar 

  11. Watson SR, Halmagyi GM, Colebatch JG. Vestibular hypersensitivity to sound (Tullio phenomenon): structural and functional assessment. Neurology. 2000;54:722–8.

    CAS  PubMed  Google Scholar 

  12. Hawkins JE Jr. Comparative otopathology: aging, noise, and ototoxic drugs. Adv Otorhinolaryngol. 1973;20:125–41.

    PubMed  Google Scholar 

  13. Izumikawa M, Minoda R, Kawamoto K et al. Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med. 2005;11:271–6.

    Article  CAS  PubMed  Google Scholar 

  14. von Bekesy G. Experiments in hearing. New York: McGraw-Hill; 1960.

    Google Scholar 

  15. Kringlebotn M. The equality of volume displacements in the inner ear windows. J Acoust Soc Am. 1995;98:192–6.

    Article  CAS  PubMed  Google Scholar 

  16. Stenfelt S, Hato N, Goode RL. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J Acoust Soc Am. 2004;115:797–812.

    Article  PubMed  Google Scholar 

  17. Sohmer H, Freeman S, Perez R. Semicircular canal fenestration: improvement of bone- but not air-conducted auditory thresholds. Hear Res. 2004;187:105–10.

    Article  PubMed  Google Scholar 

  18. Sohmer H, Sichel JY, Freeman S. Cochlear activation at low sound intensities by a fluid pathway. J Basic Clin Physiol Pharmacol. 2004;15:1–14.

    PubMed  Google Scholar 

  19. Gillespie PG, Dumont RA, Kachar B. Have we found the tip link, transduction channel, and gating spring of the hair cell? Curr Opin Neurobiol. 2005;15:389–96.

    Article  CAS  PubMed  Google Scholar 

  20. Ding JP, Salvi RJ, Sachs F. Stretch-activated ion channels in guinea pig outer hair cells. Hear Res. 1991;56:19–28.

    Article  CAS  PubMed  Google Scholar 

  21. Rybalchenko V, Santos-Sacchi J. Cl flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig. J Physiol. 2003;547:873–91.

    Article  CAS  PubMed  Google Scholar 

  22. Cody AR, Russell IJ. The response of hair cells in the basal turn of the guinea-pig cochlea to tones. J Physiol. 1987;383:551–69.

    CAS  PubMed  Google Scholar 

  23. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P. Prestin is the motor protein of cochlear outer hair cells. Nature (Lond) 2000; 405:149–155.

    Article  CAS  Google Scholar 

  24. Brownell WE, Bader CR, Bertrand D, de Ribaupierre RY. Evoked mechanical responses of isolated cochlear outer hair cells. Science. 1985;227:194–6.

    Article  CAS  PubMed  Google Scholar 

  25. Oghalai JS. The cochlear amplifier: augmentation of the traveling wave within the inner ear. Curr Opin Otolaryngol Head Neck Surg. 2004;12:431–8.

    PubMed  Google Scholar 

  26. Ashmore J. Cochlear outer hair cell motility. Physiol Rev. 2008;88:173–210.

    Article  CAS  PubMed  Google Scholar 

  27. Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiol Rev. 2001;81:1305–52.

    CAS  PubMed  Google Scholar 

  28. Ruggero MA, Rich NC. Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci. 1991;11:1057–67.

    CAS  PubMed  Google Scholar 

  29. Makimoto K, Takeda T, Silverstein H. Chemical composition in various compartments of inner ear fluid. Arch Otorhinolaryngol. 1978;220:259–64.

    Article  CAS  PubMed  Google Scholar 

  30. Kusakari J, Kambayashi J, Ise I, Kawamoto K. Reduction of the endocochlear potential by the new “loop” diuretic, bumetanide. Acta Otolaryngol. 1978;86:336–41.

    CAS  PubMed  Google Scholar 

  31. Bosher SK. The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea-pig. J Physiol. 1979;293:329–45.

    CAS  PubMed  Google Scholar 

  32. Spoendlin H. Anatomy of cochlear innervation. Am J Otolaryngol. 1985;6:453–67.

    Article  CAS  PubMed  Google Scholar 

  33. Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev. 1993;73:309–73.

    CAS  PubMed  Google Scholar 

  34. Ohlemiller KK, Wright JS, Dugan LL. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol. 1999;4:229–36.

    Article  CAS  PubMed  Google Scholar 

  35. McFadden SL, Ding D, Salvemini D, Salvi RJ. M40403, a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin, but not cisplatin toxicity. Toxicol Appl Pharmacol. 2003;186:46–54.

    Article  CAS  PubMed  Google Scholar 

  36. Seidman MD, Khan MJ, Dolan DF, Quirk WS. Age-related differences in cochlear microcirculation and auditory brain stem response. Arch Otolaryngol Head Neck Surg. 1996;122:1221–6.

    CAS  PubMed  Google Scholar 

  37. McFadden SL, Ding D, Burkard RF et al. Cu/Zn SOD deficiency potentiates hearing loss and cochlear pathology in aged 129,CD-1 mice. J Comp Neurol. 1999;413:101–12.

    Article  CAS  PubMed  Google Scholar 

  38. Keithley EM, Canto C, Zheng QY, Wang X, Fischel-Ghodsian N, Johnson KR. Cu/Zn superoxide dismutase and age-related hearing loss. Hear Res. 2005;209:76–85.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang H, Talaska AE, Schacht J, Sha SH. Oxidative imbalance in the aging inner ear. Neurobiol Aging. 2007;28:1605–12.

    Article  CAS  PubMed  Google Scholar 

  40. Coling DE, Yu KC, Somand D et al. Effect of SOD1 overexpression on age- and noise-related hearing loss. Free Radic Biol Med. 2003;34:873–80.

    Article  CAS  PubMed  Google Scholar 

  41. Hirose K, Hockenbery DM, Rubel EW. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro. Hear Res. 1997;104:1–14.

    Article  CAS  PubMed  Google Scholar 

  42. Schacht J. Antioxidant therapy attenuates aminoglycoside-induced hearing loss. Ann N Y Acad Sci. 1999;884:125–30.

    CAS  PubMed  Google Scholar 

  43. Sha SH, Schacht J. Salicylate attenuates gentamicin-induced ototoxicity. Lab Invest. 1999;79:807–13.

    CAS  PubMed  Google Scholar 

  44. Chen Y, Huang WG, Zha DJ et al. Aspirin attenuates gentamicin ototoxicity: from the laboratory to the clinic. Hear Res. 2007;226:178–82.

    Article  CAS  PubMed  Google Scholar 

  45. Rybak LP, Somani S. Ototoxicity. Amelioration by protective agents. Ann N Y Acad Sci. 1999;884:143–51.

    CAS  PubMed  Google Scholar 

  46. Minami SB, Sha SH, Schacht J. Antioxidant protection in a new animal model of cisplatin-induced ototoxicity. Hear Res. 2004;198:137–43.

    Article  CAS  PubMed  Google Scholar 

  47. Takeno S, Harrison RV, Ibrahim D, Wake M, Mount RJ. Cochlear function after selective inner hair cell degeneration induced by carboplatin. Hear Res. 1994;75:93–102.

    Article  CAS  PubMed  Google Scholar 

  48. Wake M, Takeno S, Ibrahim D, Harrison R. Selective inner hair cell ototoxicity induced by carboplatin. Laryngoscope. 1994;104:488–93.

    CAS  PubMed  Google Scholar 

  49. Wake M, Anderson J, Takeno S, Mount RJ, Harrison RV. Otoacoustic emission amplification after inner hair cell damage. Acta Otolaryngol. 1996;116:374–81.

    Article  CAS  PubMed  Google Scholar 

  50. Ding D, Stracher A, Salvi RJ. Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity. Hear Res. 2002;164:115–26.

    Article  CAS  PubMed  Google Scholar 

  51. Momiyama J, Hashimoto T, Matsubara A, Futai K, Namba A, Shinkawa H. Leupeptin, a calpain inhibitor, protects inner ear hair cells from aminoglycoside ototoxicity. Tohoku J Exp Med. 2006;209:89–97.

    Article  CAS  PubMed  Google Scholar 

  52. Wang J, Ding D, Shulman A, Stracher A, Salvi RJ. Leupeptin protects sensory hair cells from acoustic trauma. Neuroreport. 1999;10:811–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D. Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res. 1984;13:229–47.

    Article  CAS  PubMed  Google Scholar 

  54. Adelman C, Freeman S, Paz Z, Sohmer H. Salicylic acid injection before noise exposure reduces permanent threshold shift. Audiol Neurootol. 2008;13:266–72.

    Article  CAS  PubMed  Google Scholar 

  55. Nazarian Y, Perez R, Adelman C, Sichel JY, Sohmer H. Does temporary hearing threshold elevation protect the ear from noise induced damage? (Abstract). J Basic Clin Physiol Pharmacol. 2006;17:200.

    Google Scholar 

  56. Maison SF, Luebke AE, Liberman MC, Zuo J. Efferent protection from acoustic injury is mediated via α9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci. 2002;22:10838–46.

    CAS  PubMed  Google Scholar 

  57. Darrow KN, Maison SF, Liberman MC. Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury. J Neurophysiol. 2007;97:1775–85.

    Article  PubMed  Google Scholar 

  58. Hu BH, Henderson D, Nicotera TM. Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res. 2002;166:62–71.

    Article  PubMed  Google Scholar 

  59. Prazma J, Vance SG, Bolster DE, Pillsbury HC, Postma DS. Cochlear blood flow. The effect of noise at 60 minutes’ exposure. Arch Otolaryngol Head Neck Surg. 1987;113:36–9.

    CAS  PubMed  Google Scholar 

  60. Lamm K, Arnold W. The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO2 and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res. 2000;141:199–219.

    Article  CAS  PubMed  Google Scholar 

  61. Ehrenberger K, Felix D. Receptor pharmacological models for inner ear therapies with emphasis on glutamate receptors: a survey. Acta Otolaryngol. 1995;115:236–40.

    Article  CAS  PubMed  Google Scholar 

  62. Puel JL, Pujol R, Tribillac F, Ladrech S, Eybalin M. Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. J Comp Neurol. 1994;341:241–56.

    Article  CAS  PubMed  Google Scholar 

  63. Puel JL, Ruel J, Gervais d’Aldin C, Pujol R. Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. Neuroreport. 1998;9:2109–14.

    Article  CAS  PubMed  Google Scholar 

  64. Khan MJ, Seidman MD, Quirk WS, Shivapuja BG. Effects of kynurenic acid as a glutamate receptor antagonist in the guinea pig. Eur Arch Otorhinolaryngol. 2000;257:177–81.

    Article  CAS  PubMed  Google Scholar 

  65. Nordmann AS, Bohne BA, Harding GW. Histopathological differences between temporary and permanent threshold shift. Hear Res. 2000;139:13–30.

    Article  CAS  PubMed  Google Scholar 

  66. Patuzzi RB, Yates GK, Johnstone BM. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Hear Res. 1989;39:189–202.

    Article  CAS  PubMed  Google Scholar 

  67. Quirk WS, Shivapuja BG, Schwimmer CL, Seidman MD. Lipid peroxidation inhibitor attenuates noise-induced temporary threshold shifts. Hear Res. 1994;74:217–20.

    Article  CAS  PubMed  Google Scholar 

  68. Henderson D, McFadden SL, Liu CC, Hight N, Zheng XY. The role of antioxidants in protection from impulse noise. Ann N Y Acad Sci. 1999;884:368–80.

    Article  CAS  PubMed  Google Scholar 

  69. Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res. 1998;117:31–8.

    Article  CAS  PubMed  Google Scholar 

  70. Niu X, Canlon B. Protective mechanisms of sound conditioning. Adv Otorhinolaryngol. 2002;59:96–105.

    PubMed  Google Scholar 

  71. Yoshida N, Kristiansen A, Liberman MC. Heat stress and protection from permanent acoustic injury in mice. J Neurosci. 1999;19:10116–24.

    CAS  PubMed  Google Scholar 

  72. Oliveira JA, Canedo DM, Rossato M, Andrade MH. Self-protection against aminoglycoside ototoxicity in guinea pigs. Otolaryngol Head Neck Surg. 2004;131:271–9.

    Article  PubMed  Google Scholar 

  73. Paz Z, Freeman S, Horowitz M, Sohmer H. Prior heat acclimation confers protection against noise-induced hearing loss. Audiol Neurootol. 2004;9:363–9.

    Article  PubMed  Google Scholar 

  74. Wang Y, Liberman MC. Restraint stress and protection from acoustic injury in mice. Hear Res. 2002;165:96–102.

    Article  PubMed  Google Scholar 

  75. Seidman MD, Shivapuja BG, Quirk WS. The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngol Head Neck Surg. 1993;109:1052–6.

    CAS  PubMed  Google Scholar 

  76. Kopke RD, Weisskopf PA, Boone JL et al. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear Res. 2000;149:138–46.

    Article  CAS  PubMed  Google Scholar 

  77. Yamashita D, Jiang HY, Le Prell CG, Schacht J, Miller JM. Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience. 2005;134:633–42.

    Article  CAS  PubMed  Google Scholar 

  78. Le Prell CG, Yamashita D, Minami SB, Yamasoba T, Miller JM. Mechanisms of noise-induced hearing loss indicate multiple methods of prevention. Hear Res. 2007;226:22–43.

    Article  PubMed  Google Scholar 

  79. Le Prell CG, Hughes LF, Miller JM. Free radical scavengers vitamins A, C, and E plus magnesium reduce noise trauma. Free Radic Biol Med. 2007;42:1454–63.

    Article  CAS  PubMed  Google Scholar 

  80. Coleman JK, Kopke RD, Liu J et al. Pharmacological rescue of noise induced hearing loss using N-acetylcysteine and acetyl-l-carnitine. Hear Res. 2007;226:104–13.

    Article  CAS  PubMed  Google Scholar 

  81. Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, Balough BJ. NAC for noise: from the bench top to the clinic. Hear Res. 2007;226:114–25.

    Article  PubMed  Google Scholar 

  82. Fukushima N, White P, Harrison RV. Influence of acoustic deprivation on recovery of hair cells after acoustic trauma. Hear Res. 1990;50:107–18.

    Article  CAS  PubMed  Google Scholar 

  83. Bielefeld EC, Kopke RD, Jackson RL, Coleman JK, Liu J, Henderson D. Noise protection with N-acetyl-l-cysteine (NAC) using a variety of noise exposures, NAC doses, and routes of administration. Acta Otolaryngol. 2007;127:914–9.

    Article  CAS  PubMed  Google Scholar 

  84. Ylikoski J. Acute acoustic trauma in Finnish conscripts. Etiological factors and characteristics of hearing impairment. Scand Audiol. 1989;18:161–5.

    Article  CAS  PubMed  Google Scholar 

  85. Van Eyken E., Van CG, Van LL. The complexity of age-related hearing impairment: contributing environmental and genetic factors. Audiol Neurootol. 2007;12:345–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Sohmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sohmer, H., Adelman, C. (2011). Radicals Attack the Ear The Toll: A Loss of Hearing. In: Gadoth, N., Göbel, H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-514-9_14

Download citation

Publish with us

Policies and ethics