Skip to main content

The Properties of Therapeutically Useful Iron Chelators

  • Chapter
  • First Online:
Iron Physiology and Pathophysiology in Humans

Part of the book series: Nutrition and Health ((NH))

Abstract

Although iron is essential for the proper functioning of all living cells, it is toxic when present in excess. In the presence of molecular oxygen, “loosely bound” iron is able to redox cycle between the two most stable oxidation states, iron(II) and iron(III), thereby generating oxygen-derived free radicals, such as the hydroxyl radical [1]. Hydroxyl radicals are highly reactive and capable of interacting with most types of biological molecules, including sugars, lipids, proteins and nucleic acids, resulting in peroxidative tissue damage [2]. The uncontrolled production of such highly reactive species is undesirable, and thus, a number of protective strategies are adopted by cells to prevent their formation. One of the most important is the tight control of iron storage, transport and distribution. In fact, iron metabolism in man is highly conservative with the majority of iron being recycled within the body. Since man lacks a physiological mechanism for eliminating iron, iron homeostasis is largely achieved by the regulation of iron absorption. In addition, the levels of many of the proteins involved in iron transport, storage and catalysis are controlled by body iron levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Clarendon; 2007.

    Google Scholar 

  2. Crichton RR. Inorganic biochemistry of iron metabolism from molecular mechanisms to clinical consequences. 2nd ed. New York: Wiley; 2001.

    Google Scholar 

  3. Hershko C, Konijn AM, Link G. Iron chelators for thalassaemia. Br J Haematol. 1998;101:399–406.

    Article  PubMed  CAS  Google Scholar 

  4. Martell AE, Smith RM. Critical stability constant, vol. 1–6. London: Plenum Press; 1974–1989.

    Google Scholar 

  5. Harris DC, Aisen P. Facilitation of Fe(II) autoxidation by Fe(III) complexing agents. Biochim Biophys Acta. 1973;329:156–8.

    Article  PubMed  CAS  Google Scholar 

  6. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–57.

    Article  PubMed  CAS  Google Scholar 

  7. Borgias B, Hugi AD, Raymond KN. Isomerization and solution structures of desferrioxamine B complexes of Al3+ and Ga3+. Inorg Chem. 1989;28:3538–45.

    Article  CAS  Google Scholar 

  8. Raymond KN, Muller G, Matzanke BF. Complexation of iron by siderophores: a review of their solution and structural chemistry and biological function. Top Curr Chem. 1984;58:49–102.

    Google Scholar 

  9. Liu ZD, Khodr HH, Liu DY, Lu SL, Hider RC. Synthesis, physicochemical characterisation and biological evaluation of 2-(1′-hydroxyalkyl)-3-hydroxypyridin-4-ones: novel iron chelators with enhanced pFe3+ values. J Med Chem. 1999;42:4814–23.

    Article  PubMed  CAS  Google Scholar 

  10. Hider RC, Mohd-Nor AR, Silver J, Morrison IEG, Rees LVC. Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and mössbauer study of iron(II) and iron(III). Complexes from phenolic and catecholic system. J Chem Soc Dalton Trans. 1981;2:609–22.

    Article  Google Scholar 

  11. Gautier-Luneau I, Merle C, Phanon D, et al. New trends in the chemistry of iron(III) citrate complexes: correlations between X-ray structures and solution species probed by electrospray mass spectrometry and kinetics of iron uptake from citrate by iron chelators. Chemistry. 2005;11:2207–19.

    Article  PubMed  CAS  Google Scholar 

  12. Silva AMN, Kong X, Parkin MC, Cammack R, Hider RC. Iron(III) citrate speciation in aqueous solution. Dalton Trans. 2009;40:8616–25.

    Article  PubMed  Google Scholar 

  13. Carrano CJ, Drechsel H, Kaiser D, et al. Coordination chemistry of the carboxylate type siderophore rhizoferrin: the iron(III) complex and its metal analogs. Inorg Chem. 1996;35:6429–36.

    Article  PubMed  CAS  Google Scholar 

  14. Tilbrook GS, Hider RC. Iron chelators for clinical use. In: Sigel A, Sigel H, editors. Metal irons in biological systems, Iron transport and storage in microorganisms, plants and animals, vol. 35. New York: Marcel Dekker; 1998. p. 691–730.

    Google Scholar 

  15. Holander D, Ricketts D, Boyd CAR. Importance of probe molecular geometry in determining intestinal permeability. Can J Gastroenterol. 1988;2:35A–8.

    Google Scholar 

  16. Fagerholm U, Nilsson D, Knutson L, Lennernas H. Jejunal permeability in humans in vivo and rats in situ: investigation of molecular size selectivity and solvent drag. Acta Physiol Scand. 1999;165:315–24.

    Article  PubMed  CAS  Google Scholar 

  17. Kim M. Absorption of polyethylene glycol oligomers (330–1122 Da) is greater in the jejunum than in the ileum of rats. J Nutr. 1996;126:2172–8.

    PubMed  CAS  Google Scholar 

  18. O’Halloran TV. Transition-metals in control of gene-expression. Science. 1993;261:715–25.

    Article  PubMed  Google Scholar 

  19. Lind MD, Hamor MJ, Hamor TA, Hoard JL. Stereochemistry of ethylene diaminetetroaceto complexes. Inorg Chem. 1964;3:34–43.

    Article  CAS  Google Scholar 

  20. Hider RC. Potential protection from toxicity by oral iron chelators. Toxicol Lett. 1995;82–3:961–7.

    Article  Google Scholar 

  21. Liu ZD, Kayyali R, Hider RC, Porter JB, Theobald AE. Design, synthesis, and evaluation of novel 2-substituted 3-hydroxypyridin-4-ones: structure-activity investigation of metalloenzyme inhibition by iron chelators. J Med Chem. 2002;45:631–9.

    Article  PubMed  CAS  Google Scholar 

  22. Habgood MD, Liu ZD, Dehkordi LS, Khodr HH, Abbott J, Hider RC. Investigation into the correlation between the structure of hydroxypyridinones and blood-brain barrier permeability. Biochem Pharmacol. 1999;57:1305–10.

    Article  PubMed  CAS  Google Scholar 

  23. Hershko C, Grady RW, Cerami A. Mechanism of iron chelation in the hypertransfused rat: definition of two alternative pathways of iron mobilisation. J Lab Clin Med. 1978;92:144–9.

    PubMed  CAS  Google Scholar 

  24. Peter HH. Industrial aspects of iron chelators: pharmaceutical application. In: Spik G, Montreuil J, Crichton RR, Mazurier J, editors. Proteins of iron storage and transport. Amsterdam: Elsevier; 1985. p. 293–303.

    Google Scholar 

  25. Bergeron RJ, Wiegand J, McManis JS, Perumal PT. Synthesis and biological evaluation of hydroxamate-based iron chelators. J Med Chem. 1991;34:3182–7.

    Article  PubMed  CAS  Google Scholar 

  26. Martell AE, Motekaitis RJ, Clarke ET. Synthesis of N,N′-di(2-hydroxybenzyl)ethylenediamine-N,N′-diacetic (HBED) derivatives. Can J Chem. 1986;64:449–56.

    Article  CAS  Google Scholar 

  27. Bergeron RJ, Wiegand J, Brittenham GM. HBED: a potential alternative to deferoxamine for iron-chelating therapy. Blood. 1998;91:1446–52.

    PubMed  CAS  Google Scholar 

  28. Pitt CG, Bao Y, Thompson J, Wani MC, Rosenkrantz H, Metterville J. Esters and lactones of phenolic amino carboxylic acids: prodrugs for iron chelation. J Med Chem. 1986;29:1231–7.

    Article  PubMed  CAS  Google Scholar 

  29. Gasparini F, Leutert T, Farley DL. N,N′-bis(2-hydroxybenzyl)ethylene-diamine-N,N′-diacetic acid derivatives as chelating agents. International Patent WO 95/16663; 1995.

    Google Scholar 

  30. Lowther N, Tomlinson B, Fox R, Faller B, Sergejew T, Donnelly H. Caco-2 cell permeability of a new (hydroxybenzyl)ethylenediamine oral iron chelator: correlation with physicochemical properties and oral activity. J Pharm Sci. 1998;87:1041–5.

    Article  PubMed  CAS  Google Scholar 

  31. Guterman SK, Morris PM, Tannenberg WJK. Feasibility of enterochelin as an iron-chelating drug: studies with human serum and a mouse model system. Gen Pharm. 1978;9:123–7.

    Article  CAS  Google Scholar 

  32. Streater M, Taylor PD, Hider RC, Porter JB. Novel 3-hydroxyl-2(1 H)-pyridinones. Synthesis, iron(III) chelating properties and biological activity. J Med Chem. 1990;33:1749–55.

    Article  PubMed  CAS  Google Scholar 

  33. Xu JD, Kullgren B, Durbin PW, Raymond KN. Specific sequestering agents for the actinides. 28: synthesis and initial evaluation of multidentate 4-carbamoyl-3-hydroxy-1-methyl-2(1 H)-pyridinone ligands for in vivo plutonium(IV) chelation. J Med Chem. 1995;38:2606–14.

    Article  PubMed  CAS  Google Scholar 

  34. Rai BL, Khodr H, Hider RC. Synthesis, physico-chemical and iron(III)-chelating properties of novel hexadentate 3-hydroxy-2(1H)pyridinone ligands. Tetrahedron. 1999;55:1129–42.

    Article  CAS  Google Scholar 

  35. Piyamongkol S, Zhou T, Liu ZD, Khodr HH, Hider RC. Design and characterisation of novel hexadentate 3-hydroxypyridin-4-one ligands. Tetrahedron Lett. 2005;46:1333–6.

    Article  CAS  Google Scholar 

  36. Hahn FN, McMurry TJ, Hugi A, Raymond KN. Coordination chemistry of microbial iron transport. 42: structural and spectroscopic characterisation of diastereometric Cr(III) and Co(III) complexes of desferrithiocin. J Am Chem Soc. 1990;112:1854–60.

    Article  CAS  Google Scholar 

  37. Bergeron RJ, Wiegand J, McManis JS, Bharti N, Singh S. Desferrithiocin analogues and nephrotoxicity. J Med Chem. 2008;51:5993–6004.

    Article  PubMed  CAS  Google Scholar 

  38. Bergeron RJ, Wiegand J, Bharti N, Singh S, Rocca JR. Impact of the 3,6,9-trioxadecyloxy group on desazadesferrithiocin analogue iron clearance and organ distribution. J Med Chem. 2007;50:3302–13.

    Article  PubMed  CAS  Google Scholar 

  39. Lattmann R, Acklin P. Substituted 3,5-diphenyl-1,2,4-triazoles and their use as pharmaceutical metal chelators. International Patent WO 97/49395; 1997.

    Google Scholar 

  40. Nick HP, Acklin P, Faller B, et al. A new, potent, orally active iron chelator. In: Badman DG, Bergeron RJ, Brittenham GM, editors. Iron chelators: new development strategies. Florida: The Saratoga Group; 2000. p. 311–31.

    Google Scholar 

  41. Steinhauser S, Heinz U, Bartholoma M, Weyhermuller T, Nick H, Hegetschweiler K. Complex formation of ICL670 and related ligands with Fe(II) and Fe(III). Eur J Inorg Chem. 2004;21:4177–92.

    Article  Google Scholar 

  42. Heinz U, Hegetschweiler K, Acklin P, Faller B, Lattmann R, Schnebli HP. 4-[3,5-Bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]benzoic acid: a novel efficient and selective iron(III) complexing agent. Angew Chem Int Ed. 1999;38:2568–70.

    Article  CAS  Google Scholar 

  43. Porter JB. Monitoring and treatment of iron overload: state of the art and new approaches. Semin Hematol. 2005;42(2 Suppl. 1):S14–8.

    Article  PubMed  CAS  Google Scholar 

  44. Pennell DJ, Porter JB, Cappellini MD, et al. Efficacy of defersirox in reducing and preventing cardiac iron overload in β-thalassemia. Blood. 2010;115:2364–71.

    Article  PubMed  CAS  Google Scholar 

  45. Zanninelli G, Glickstein H, Breuer W, et al. Chelation and mobilization of cellular iron by different classes of chelators. Mol Pharmacol. 1997;51:842–52.

    PubMed  CAS  Google Scholar 

  46. Liu ZD, Hider RC. Design of clinically useful iron(III)-selective chelators. Med Res Rev. 2002;22:26–64.

    Article  PubMed  CAS  Google Scholar 

  47. Balfour JAB, Foster RH. Deferiprone – a review of its clinical potential in iron overload in beta-thalassaemia major and other transfusion-dependent diseases. Drugs. 1999;58:553–78.

    Article  CAS  Google Scholar 

  48. Singh S, Epemolu O, Dobbin PS, et al. Urinary metabolic profiles in man and rat of 1,2-dimethyl- and 1,2-diethyl substituted 3-hydroxypyridin-4-ones. Drug Metab Dispos. 1992;20:256–61.

    PubMed  CAS  Google Scholar 

  49. Borgna-Pignatti C, Cappellini MD, De Stefano P, et al. Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood. 2006;107:3733–7.

    Article  PubMed  CAS  Google Scholar 

  50. Maggio A, D’Amico G, Morabito A, et al. Deferiprone versus deferoxamine in patients with thalassemia major: a randomized clinical trial. Blood Cells Mol Dis. 2002;28:196–208.

    Article  PubMed  Google Scholar 

  51. Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood. 2006;107:3436–41.

    Article  PubMed  CAS  Google Scholar 

  52. Boddaert N, Le Quan Sang KH, Rotig A, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110:401–8.

    Article  PubMed  CAS  Google Scholar 

  53. Sohn YS, Breuer W, Munnich A, Cabantchik ZI. Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 2008;111:1690–9.

    Article  PubMed  CAS  Google Scholar 

  54. Porter JB, Morgan J, Hoyes KP, Burke LC, Huehns ER, Hider RC. Relative oral efficacy and acute toxicity of hydroxypyridin-4-one iron chelators in mice. Blood. 1990;76:2389–96.

    PubMed  CAS  Google Scholar 

  55. Porter JB, Abeysinghe RD, Hoyes KP, et al. Contrasting interspecies efficacy and toxicology of 1,2-diethyl-3-hydroxypyridin-4-one CP94, relates to differing metabolism of the iron chelating site. Br J Haematol. 1993;85:159–68.

    Article  PubMed  CAS  Google Scholar 

  56. Porter JB, Singh S, Katherine PH, Epemolu O, Abeysinghe RD, Hider RC. Lessons from preclinical and clinical studies with 1,2-diethyl-3-hydroxypyridin-4-one, CP94 and related compounds. Adv Exp Med Biol. 1994;356:361–70.

    Article  PubMed  CAS  Google Scholar 

  57. Piyamongkol S, Ma YM, Kong X, et al. Amido-3-hydroxypyridin-4-ones as iron(III) ligands. Chem-Eur J. 2010;16:6374–81.

    Article  PubMed  CAS  Google Scholar 

  58. Lowther N, Fox P, Faller B, et al. In vitro and in situ permeability of a ‘second generation’ hydroxypyridinone oral iron chelator: correlation with physico-chemical properties and oral activity. Pharm Res. 1999;16:434–40.

    Article  PubMed  CAS  Google Scholar 

  59. Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy. Br J Pharmacol. 2005;146:1041–59.

    Article  PubMed  CAS  Google Scholar 

  60. Molina-Holgado F, Gaeta A, Francis PT, Williams RJ, Hider RC. Neuroprotective actions of deferiprone in cultured cortical neurons and SHSY-5Y cells. J Neurochem. 2008;105:2466–76.

    Article  PubMed  CAS  Google Scholar 

  61. Clarke ET, Martell AE, Reibenspies J. Crystal structure of the tris 1,2-dimethyl-3-hydroxy-4-pyridinone (DMHP) complex with the Fe(III) ion. Inorg Chim Acta. 1992;196:177–83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Hider Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hider, R.C., Ma, Y.M. (2012). The Properties of Therapeutically Useful Iron Chelators. In: Anderson, G., McLaren, G. (eds) Iron Physiology and Pathophysiology in Humans. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-485-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-485-2_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-484-5

  • Online ISBN: 978-1-60327-485-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics