Skip to main content

Determining Spatial Chromatin Organization of Large Genomic Regions Using 5C Technology

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 567))

Abstract

Spatial organization of chromatin plays an important role at multiple levels of genome regulation. On a global scale, its function is evident in processes like metaphase and chromosome segregation. On a detailed level, long-range interactions between regulatory elements and promoters are essential for proper gene regulation. Microscopic techniques like FISH can detect chromatin contacts, although the resolution is generally low making detection of enhancer–promoter interaction difficult. The 3C methodology allows for high-resolution analysis of chromatin interactions. 3C is now widely used and has revealed that long-range looping interactions between genomic elements are widespread. However, studying chromatin interactions in large genomic regions by 3C is very labor intensive. This limitation is overcome by the 5C technology. 5C is an adaptation of 3C, in which the concurrent use of thousands of primers permits the simultaneous detection of millions of chromatin contacts. The design of the 5C primers is critical because this will determine which and how many chromatin interactions will be examined in the assay. Starting material for 5C is a 3C template. To make a 3C template, chromatin interactions in living cells are cross-linked using formaldehyde. Next, chromatin is digested and subsequently ligated under conditions favoring ligation events between cross-linked fragments. This yields a genome-wide 3C library of ligation products representing all chromatin interactions in vivo. 5C then employs multiplex ligation-mediated amplification to detect, in a single assay, up to millions of unique ligation products present in the 3C library. The resulting 5C library can be analyzed by microarray analysis or deep sequencing. The observed abundance of a 5C product is a measure of the interaction frequency between the two corresponding chromatin fragments. The power of the 5C technique described in this chapter is the high-throughput, high-resolution, and quantitative way in which the spatial organization of chromatin can be examined.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. ENCODE-consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.

    Article  Google Scholar 

  2. Kleinjan, D. A. and van Heyningen, V. (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32.

    Article  PubMed  CAS  Google Scholar 

  3. Dekker, J. (2008) Gene regulation in the third dimension. Science 319, 1793–1794.

    Article  PubMed  CAS  Google Scholar 

  4. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell. 10, 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  5. Spilianakis, C. G. and Flavell, R. A. (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  6. Cremer, T. and Cremer C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301.

    Article  PubMed  CAS  Google Scholar 

  7. Sexton, T., Schober, H., Fraser, P. and Gasser, S. M. (2007) Gene regulation through nuclear organization. Nat. Struct. Mol. Biol. 14, 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  8. Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science 295, 1306–1311.

    Article  PubMed  CAS  Google Scholar 

  9. Splinter, E., Grosveld, F. and de Laat, W. (2004) 3C technology: analyzing the spatial organization of genomic loci in vivo. Meth. Enzymol. 375, 493–507.

    Article  PubMed  CAS  Google Scholar 

  10. Miele, A., Gheldof, N., Tabuchi, T. M., Dostie, J. and Dekker, J. Mapping chromatin interactions by Chromosome Conformation Capture (3C). (2006) In: Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K., eds. Current Protocols in Molecular Biology. Vol. Supplement 74. Hoboken, NJ: John Wiley & Sons, 21.11.1–21.11.20.

    Google Scholar 

  11. Lomvardas, S., Barnea, G., Pisapia, D. J., Mendelsohn, M., Kirkland, J. and Axel, R. (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413.

    Article  PubMed  CAS  Google Scholar 

  12. Spilianakis, C.G., Lalioti, M. D., Town, T., Lee, G. R. and Flavell, R. A. (2005) Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645.

    Article  PubMed  CAS  Google Scholar 

  13. Bacher, C. P., Guggiari, M. and Brors, B., et al. (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol. 8, 293–299.

    Article  PubMed  CAS  Google Scholar 

  14. Xu, N., Tsai, C. L. and Lee, J. T. (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152.

    Article  PubMed  CAS  Google Scholar 

  15. Dostie, J., Richmond, T. A. and Arnaout, R. A., et al. (2006) Chromosome Conformation Capture Carbon Copy (5C): A massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  16. Dostie, J. and Dekker, J. (2007) Mapping networks of physical interactions between genomic elements using 5C technology. Nat. Protoc. 2, 988–1002.

    Article  PubMed  CAS  Google Scholar 

  17. Dekker, J. (2006) The 3 C's of Chromosome Conformation Capture: controls, controls, controls. Nat. Methods 3, 17–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

van Berkum, N.L., Dekker, J. (2009). Determining Spatial Chromatin Organization of Large Genomic Regions Using 5C Technology. In: Collas, P. (eds) Chromatin Immunoprecipitation Assays. Methods in Molecular Biology, vol 567. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-414-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-414-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-413-5

  • Online ISBN: 978-1-60327-414-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics