Skip to main content
  • 2268 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wheatley DN. Diffusion, perfusion and the exclusion principles in the structure and functional organization of the living cell: reappraisal of the properties of the ‘ground substance’. J Exp Biol. 2003;206:1955–1961.

    Article  CAS  Google Scholar 

  2. Mendehlson E. Heat and life: the development of the theory of animal heat. Cambridge: Harvard University Press, 1964.

    Google Scholar 

  3. McLean JA, Tobin G. Animal and human calorimetry. Cambridge: Cambridge University Press, 1987.

    Google Scholar 

  4. Atwater WO, Benedict FG. Experiments on the metabolism of matter and energy in the human body, 1898–1900. U.S. Department of Agriculture, Office of Experiment Stations-Bulletin No. 109. Washington: Government Printing Office, 1902.

    Google Scholar 

  5. Benedict FG, Milner RD. Experiments on the metabolism of matter and energy in the human body, 1903–1904. U.S. Department of Agriculture, Office of Experiment Stations-Bulletin No. 175. Washington: Government Printing Office, 1907.

    Google Scholar 

  6. Ferrannini E. The theoretical bases of indirect calorimetry: an overview. Metabolism. 1988;37:287–301.

    Article  CAS  Google Scholar 

  7. Simonson DC, DeFronzo RA. Indirect calorimetry: methodological and interpretative problems. Am J Physiol. 1990;258:E399–E412.

    CAS  Google Scholar 

  8. Goldberg GR, Prentice AM, Davies HL, et al. Overnight and basal metabolic rates in men and women. Eur J Clin Nutr. 1988;42:137–144.

    CAS  Google Scholar 

  9. Compher C, Frankenfield D, Keim N, et al. Best practice methods to apply to the measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106:881–903.

    Article  Google Scholar 

  10. Scott CB. Resting metabolic rate variability as influenced by mouthpiece and noseclip practice procedures. J Burn Care Rehabil. 1993;14:573–577.

    Article  CAS  Google Scholar 

  11. Segal KR. Comparison of indirect calorimetric measurements of resting energy expenditure with a ventilated hood, face mask and mouthpiece. Am J Clin Nutr. 1987;45:1420–1423.

    CAS  Google Scholar 

  12. Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev. 1997;77:731–758.

    CAS  Google Scholar 

  13. Hulbert AJ, Else PL. Mechanisms underlying the cost of living in animals. Annu Rev Physiol. 2000;62:207–235.

    Article  CAS  Google Scholar 

  14. Qian H, Beard DA. Metabolic futile cycles and their functions: a systems analysis of energy and control. IEE Proceed. 2006;153(4):192–200.

    CAS  Google Scholar 

  15. Clark HD, Hoffer LJ. Reappraisal of the resting metabolic rate of normal young men. Am J Clin Nutr. 1991;53:21–26.

    CAS  Google Scholar 

  16. Kleiber M. The fire of life: an introduction to animal energetics. Malabar, FL: Robert E. Krieger, 1975.

    Google Scholar 

  17. Owen OE, Kavle E, Owen RS, et al. A reappraisal of caloric requirements in healthy women. Am J Clin Nutr. 1986;44:1–19.

    CAS  Google Scholar 

  18. Kendrick ZV, Bezilla TA, Paolone VJ. Resting energy expenditure of undergraduate and graduate college women. Ann Sports Med. 1990;5:166–170.

    Google Scholar 

  19. Kendrick ZV, McPeek CK, Young KF. Prediction of the resting energy expenditure of women following 12 to 18 weeks of very-low-calorie dieting. Ann Sports Med. 1990;5:118–123.

    Google Scholar 

  20. Roza AM, Shizgal HM. The Harris-Benedict equation reevaluated: resting energy requirements and the body cell mass. Am J Clin Nutr. 1984;40:168–182.

    CAS  Google Scholar 

  21. Owen OE, Holup JL, D'Alessio DA, et al. A reappraisal of the caloric requirements of men. Am J Clin Nutr. 1987;46:875–885.

    CAS  Google Scholar 

  22. Poehlman ET, Goran MI, Gardner AW, et al. Determinants of decline in aging females. Am J Physiol. 1993;264:E450–E455.

    CAS  Google Scholar 

  23. Benedek C, Berclaz PY, Jequier E, et al. Resting metabolic rate and protein turnover in apparently healthy elderly Gambien men. Am J Physiol. 1995;268:E1083–EE1088.

    CAS  Google Scholar 

  24. Bryner RW, Ullrich IH, Sauers J, et al. Effects of resistance training vs. aerobic training combined with an 800 calorie liquid diet on lean body mass and resting metabolic rate. J Am Coll Nutr. 1999;18:115–121.

    CAS  Google Scholar 

  25. National Research Council. Recommended dietary allowances, 10th ed. Washington, DC: National Academy Press, 1989. pp. 33–34.

    Google Scholar 

  26. Pitkin RM. Energy in pregnancy. Am J Clin Nutr. 1999;69:583.

    CAS  Google Scholar 

  27. Goldberg GR, Prentice AM, Coward DA, et al. Longitudinal assessment of energy expenditure in pregnancy by the doubly labeled water method. Am J Clin Nutr. 1993;57:494–505.

    CAS  Google Scholar 

  28. Koop-Hoolihan LE, van Loan MD, Wong WW, et al. Longitudinal assessment of energy balance in well-nourished, pregnant women. Am J Clin Nutr. 1999;69:697–704.

    Google Scholar 

  29. Champigny O, Hitier Y, Bourdel G. Possible metabolic implications of pyruvate and lactate accumulation in the liver of pregnant rats. J Nutr. 1980;110:610–617.

    CAS  Google Scholar 

  30. Sousa T, Mota R, Domingos T, et al. Thermodynamics of organisms in the context of dynamic energy budget theory. Phys Rev E. 2006;74(051901):1–15.

    Google Scholar 

  31. Schaarschimdt B, Zotin AI, Brettel R, et al. Experimental investigation of the bound dissipation function. Arch Microbiol. 1975;105:13–16.

    Article  Google Scholar 

  32. Loehr K-D, Sayyadi P, Lamprecht I. Thermodynamic aspects of development for Tenebrio molitor L. Experientia. 1976;32:1002–1003.

    Article  CAS  Google Scholar 

  33. Zotin AA, Zotin AI. Thermodynamic bases of developmental processes. J Non-Equilib. Ther-modyn. 1996;21:307–320.

    Article  CAS  Google Scholar 

  34. Flatt J-P. Energetics of intermediary metabolism. In: Assessment of energy metabolism in health and disease, report of the first ross conference on medical research. Columbus, OH: Ross Laboratories, 1980. pp. 77–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scott, C.B. (2008). Metabolic Energy Expenditure at Rest. In: A Primer for the Exercise and Nutrition Sciences. Humana Press. https://doi.org/10.1007/978-1-60327-383-1_14

Download citation

Publish with us

Policies and ethics