Skip to main content

The Integration of Metabolism and Cell Death

  • Chapter
  • First Online:
Essentials of Apoptosis

Abstract

Metabolism is a fundamental cellular process necessary for energy production and biosynthesis. While the biochemistry of basic metabolic pathways has been known for some time, how the metabolic state of a cell regulates fate decisions has remained poorly understood. In recent years, cellular metabolism has been shown to play an integral role in the regulation of apoptosis, in particular via interaction with the Bcl-2 family of proteins. This chapter focuses on the inherent relationships between metabolism and apoptosis, as well as several more intricate mechanisms of how apoptotic and metabolic machinery interact to determine cell fate under a variety of conditions, including a potential for the metabolic regulation of apoptosis in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Droin NM, Green DR. Role of Bcl-2 family members in immunity and disease. Biochim Biophys Acta 2004;1644:179–88.

    Article  PubMed  CAS  Google Scholar 

  2. Hu Y, Benedict MA, Ding L, Nunez G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J 1999;18:3586–95.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2000;275:31199–203.

    Article  PubMed  CAS  Google Scholar 

  4. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997;185:1481–6.

    Article  PubMed  CAS  Google Scholar 

  5. Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol 2004;172:4661–5.

    PubMed  CAS  Google Scholar 

  6. Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol 2006;18:598–608.

    Article  PubMed  CAS  Google Scholar 

  7. Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 2004;18:1272–82.

    Article  PubMed  CAS  Google Scholar 

  8. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 2005;99:330–7.

    Article  PubMed  CAS  Google Scholar 

  9. Bentley J, Itchayanan D, Barnes K, et al. Interleukin-3-mediated cell survival signals include phosphatidylinositol 3-kinase-dependent translocation of the glucose transporter GLUT1 to the cell surface. J Biol Chem 2003;278:39337–48.

    Article  PubMed  CAS  Google Scholar 

  10. Juntilla MM, Wofford JA, Birnbaum MJ, Rathmell JC, Koretzky GA. Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA 2007;104:12105–10.

    Article  PubMed  CAS  Google Scholar 

  11. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell 2007;18:1437–46.

    Article  PubMed  CAS  Google Scholar 

  12. Boxer RB, Stairs DB, Dugan KD, et al. Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell Metab 2006;4:475–90.

    Article  PubMed  CAS  Google Scholar 

  13. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 2001;15:1406–18.

    Article  PubMed  CAS  Google Scholar 

  14. Majewski N, Nogueira V, Bhaskar P, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 2004;16:819–30.

    Article  PubMed  CAS  Google Scholar 

  15. Majewski N, Nogueira V, Robey RB, Hay N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 2004;24:730–40.

    Article  PubMed  CAS  Google Scholar 

  16. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997;272:17269–75.

    Article  PubMed  CAS  Google Scholar 

  17. Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 2003;23:7315–28.

    Article  PubMed  CAS  Google Scholar 

  18. Deberardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 2006;281:37372–80.

    Article  PubMed  CAS  Google Scholar 

  19. Buzzai M, Bauer DE, Jones RG, et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005;24:4165–73.

    Article  PubMed  CAS  Google Scholar 

  20. del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997;278:687–9.

    Google Scholar 

  21. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997;91:231–41.

    Article  PubMed  CAS  Google Scholar 

  22. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–68.

    Article  PubMed  CAS  Google Scholar 

  23. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 2000;10:1201–4.

    Article  PubMed  CAS  Google Scholar 

  24. Dijkers PF, Birkenkamp KU, Lam EW, et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: Protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 2002;156:531–42.

    Article  PubMed  CAS  Google Scholar 

  25. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995;378:785–9.

    Article  PubMed  CAS  Google Scholar 

  26. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 2006;21:749–60.

    Article  PubMed  CAS  Google Scholar 

  27. Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005;121:1085–95.

    Article  PubMed  CAS  Google Scholar 

  28. Ding Q, He X, Hsu JM, et al. Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 2007;27:4006–17.

    Article  PubMed  CAS  Google Scholar 

  29. Plas DR, Talapatra S, Edinger AL, Rathmell JC, Thompson CB. Akt and Bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem 2001;276:12041–8.

    Article  PubMed  CAS  Google Scholar 

  30. Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 2008;15:521–9.

    Article  PubMed  CAS  Google Scholar 

  31. Shoshan-Barmatz V, Gincel D. The voltage-dependent anion channel: Characterization, modulation, and role in mitochondrial function in cell life and death. Cell Biochem Biophys 2003;39:279–92.

    Article  PubMed  CAS  Google Scholar 

  32. Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 2002;277:7610–8.

    Article  PubMed  CAS  Google Scholar 

  33. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006;70:1469–80.

    Article  PubMed  CAS  Google Scholar 

  34. Brunelle JK, Shroff EH, Perlman H, et al. Loss of Mcl-1 protein and inhibition of electron transport chain together induce anoxic cell death. Mol Cell Biol 2007;27:1222–35.

    Article  PubMed  CAS  Google Scholar 

  35. Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol 2001;21:5899–912.

    Article  PubMed  CAS  Google Scholar 

  36. Chi MM, Pingsterhaus J, Carayannopoulos M, Moley KH. Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem 2000;275:40252–7.

    Article  PubMed  CAS  Google Scholar 

  37. Zhong LT, Sarafian T, Kane DJ, et al. Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA 1993;90:4533–7.

    Article  PubMed  CAS  Google Scholar 

  38. Jensen PJ, Gitlin JD, Carayannopoulos MO. GLUT1 deficiency links nutrient availability and apoptosis during embryonic development. J Biol Chem 2006;281:13382–7.

    Article  PubMed  CAS  Google Scholar 

  39. Alves NL, Derks IA, Berk E, Spijker R, van Lier RA, Eldering E. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006;24:703–16.

    Article  PubMed  CAS  Google Scholar 

  40. Deming P, Kornbluth S. Study of apoptosis in vitro using the Xenopus egg extract reconstitution system. Methods Mol Biol 2006;322:379–93.

    Article  PubMed  CAS  Google Scholar 

  41. Nutt LK, Margolis SS, Jensen M, et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 2005;123:89–103.

    Article  PubMed  CAS  Google Scholar 

  42. Tu S, McStay GP, Boucher LM, Mak T, Beere HM, Green DR. In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nat Cell Biol 2006;8:72–7.

    Article  PubMed  CAS  Google Scholar 

  43. Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004;6:1221–8.

    Article  PubMed  CAS  Google Scholar 

  44. Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005;120:237–48.

    Article  PubMed  CAS  Google Scholar 

  45. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 2007;204:25–31.

    Article  PubMed  CAS  Google Scholar 

  46. Miller BC, Zhao Z, Stephenson LM, et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 2007;4.

    Google Scholar 

  47. Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007;117:326–36.

    Article  PubMed  CAS  Google Scholar 

  48. Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10:51–64.

    Article  PubMed  CAS  Google Scholar 

  49. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: Energy metabolism and the T-cell response. Nat Rev Immunol 2005;5:844–52.

    Article  PubMed  CAS  Google Scholar 

  50. Younes M, Lechago LV, Lechago J. Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clin Cancer Res 1996;2:1151–4.

    PubMed  CAS  Google Scholar 

  51. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 1993;72:2979–85.

    Article  PubMed  CAS  Google Scholar 

  52. Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL. Glucose catabolism in cancer cells: Amplification of the gene encoding type II hexokinase. Cancer Res 1996;56:2468–71.

    PubMed  CAS  Google Scholar 

  53. Zhao Y, Altman BJ, Coloff JL, et al. Glycogen synthase kinase 3alpha and 3beta mediate a glucose-sensitive antiapoptotic signaling pathway to stabilize Mcl-1. Mol Cell Biol 2007;27:4328–39.

    Article  PubMed  CAS  Google Scholar 

  54. Gupta A, Ho DY, Brooke S, et al. Neuroprotective effects of an adenoviral vector expressing the glucose transporter: A detailed description of the mediating cellular events. Brain Res 2001;908:49–57.

    Article  PubMed  CAS  Google Scholar 

  55. Lin Z, Weinberg JM, Malhotra R, Merritt SE, Holzman LB, Brosius FC, 3rd. GLUT-1 reduces hypoxia-induced apoptosis and JNK pathway activation. Am J Physiol Endocrinol Metab 2000;278:E958–66.

    PubMed  CAS  Google Scholar 

  56. Whiteside CI, Dlugosz JA. Mesangial cell protein kinase C isozyme activation in the diabetic milieu. Am J Physiol Renal Physiol 2002;282:F975–80.

    PubMed  CAS  Google Scholar 

  57. Peter-Riesch B, Fathi M, Schlegel W, Wollheim CB. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest 1988;81:1154–61.

    Article  PubMed  CAS  Google Scholar 

  58. Colell A, Ricci JE, Tait S, et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007;129:983–97.

    Article  PubMed  CAS  Google Scholar 

  59. Danial NN, Gramm CF, Scorrano L, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003;424:952–6.

    Article  PubMed  CAS  Google Scholar 

  60. Danial NN, Walensky LD, Zhang CY, et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 2008;14:144–53.

    Article  PubMed  CAS  Google Scholar 

  61. Ricci JE, Munoz-Pinedo C, Fitzgerald P, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 2004;117:773–86.

    Article  PubMed  CAS  Google Scholar 

  62. Ricci JE, Gottlieb RA, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 2003;160:65–75.

    Article  PubMed  CAS  Google Scholar 

  63. Matoba S, Kang JG, Patino WD, et al. p53 regulates mitochondrial respiration. Science 2006;312:1650–3.

    Article  PubMed  CAS  Google Scholar 

  64. Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006;126:107–20.

    Article  PubMed  CAS  Google Scholar 

  65. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995;80:293–9.

    Article  PubMed  CAS  Google Scholar 

  66. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7:683–94.

    Article  PubMed  CAS  Google Scholar 

  67. Warburg O. On the origin of cancer cells. Science 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  68. Elstrom RL, Bauer DE, Buzzai M, et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 2004;64:3892–9.

    Article  PubMed  CAS  Google Scholar 

  69. Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006;6:184–92.

    Article  PubMed  CAS  Google Scholar 

  70. Ramanathan A, Wang C, Schreiber SL. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 2005;102:5992–7.

    Article  PubMed  CAS  Google Scholar 

  71. Kozma L, Baltensperger K, Klarlund J, Porras A, Santos E, Czech MP. The Ras signaling pathway mimics insulin action on glucose transporter translocation. Proc Natl Acad Sci USA 1993;90:4460–4.

    Article  PubMed  CAS  Google Scholar 

  72. Barnes K, McIntosh E, Whetton AD, Daley GQ, Bentley J, Baldwin SA. Chronic myeloid leukaemia: An investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene 2005;24:3257–67.

    Article  PubMed  CAS  Google Scholar 

  73. Sheng H, Shao J, DuBois RN. Akt/PKB activity is required for Ha-Ras-mediated transformation of intestinal epithelial cells. J Biol Chem 2001;276:14498–504.

    PubMed  CAS  Google Scholar 

  74. Skorski T, Bellacosa A, Nieborowska-Skorska M, et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3 k/Akt-dependent pathway. EMBO J 1997;16:6151–61.

    Article  PubMed  CAS  Google Scholar 

  75. Jin S, DiPaola RS, Mathew R, White E. Metabolic catastrophe as a means to cancer cell death. J Cell Sci 2007;120:379–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Rathmell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coloff, J.L., Zhao, Y., Rathmell, J.C. (2009). The Integration of Metabolism and Cell Death. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_9

Download citation

Publish with us

Policies and ethics