Skip to main content

Lysosomal Proteases in Cell Death

  • Chapter
  • First Online:
Essentials of Apoptosis
  • 1448 Accesses

Abstract

Apoptosis is a highly organized, energy-dependent program by which multicellular organisms eliminate damaged, superfluous, and potentially harmful cells. While caspases are the most prominent group of proteases involved in the apoptotic process, the role of lysosomes and, more particularly, of lysosomal cathepsins in cell death has only been recently unmasked. The release of cathepsins from the lysosomal lumen to the cytosol is a precondition for their participation in the regulation of apoptosis and has been described in response to a variety of death stimuli such as members of the cell-surface TNF receptor family, chemotherapeutic drugs, and nonreceptor-mediated apoptotic agents. This lysosomal membrane permeabilization often relies on the activation of the intrinsic apoptosis pathway, which involves mitochondrial membrane permeabilization and the consequent release of the proapoptotic mitochondrial proteins into the cytosol. These factors lead to caspase activation and, finally, cell death.

The aim of this chapter, emphasizing the role of lysosomal proteases in apoptosis, is to summarize past and recent findings that provide an insight into the mechanisms by which these hydrolases modulate apoptosis and also those that strongly argue for their role in the control of pathogenic cell dismantling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3(11):E255–63.

    Article  PubMed  CAS  Google Scholar 

  2. Linder S, Shoshan MC. Lysosomes and endoplasmic reticulum: Targets for improved, selective anticancer therapy. Drug Resist Updat 2005;8(4):199–204.

    Article  PubMed  CAS  Google Scholar 

  3. de Duve C. Lysosomes revisited. Eur J Biochem 1983;137(3):391–7.

    Article  PubMed  Google Scholar 

  4. Desnick RJ, Schuchman EH. Enzyme replacement and enhancement therapies: Lessons from lysosomal disorders. Nat Rev Genet 2002;3(12):954–66.

    Article  PubMed  CAS  Google Scholar 

  5. von Figura K. Molecular recognition and targeting of lysosomal proteins. Curr Opin Cell Biol 1991;3(4):642–6.

    Article  Google Scholar 

  6. Ishidoh K, Kominami E. Processing and activation of lysosomal proteinases. Biol Chem 2002;383(12):1827–31.

    Article  PubMed  CAS  Google Scholar 

  7. Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005;5(11):886–97.

    Article  PubMed  CAS  Google Scholar 

  8. Broker LE, Kruyt FA, Giaccone G. Cell death independent of caspases: A review. Clin Cancer Res 2005;11(9):3155–62.

    Article  PubMed  Google Scholar 

  9. Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta 2006;1765(2):101–25.

    PubMed  CAS  Google Scholar 

  10. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003;10(1):45–65.

    Article  PubMed  CAS  Google Scholar 

  11. Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14(3–4):193–209.

    Article  PubMed  CAS  Google Scholar 

  12. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 2003;114(2):181–90.

    Article  PubMed  CAS  Google Scholar 

  13. Schneider-Brachert W, Tchikov V, Neumeyer J, et al. Compartmentalization of TNF receptor 1 signaling: Internalized TNF receptosomes as death signaling vesicles. Immunity 2004;21(3):415–28.

    Article  PubMed  CAS  Google Scholar 

  14. Schutze S, Machleidt T, Adam D, et al. Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J Biol Chem 1999;274(15):10203–12.

    Article  PubMed  CAS  Google Scholar 

  15. Czaja MJ. TNF toxicity—Death from caspase or cathepsin, that is the question. Hepatology 2001;34(4 Pt 1):844–6.

    PubMed  CAS  Google Scholar 

  16. Leist M, Jaattela M. Triggering of apoptosis by cathepsins. Cell Death Differ 2001;8(4):324–6.

    Article  PubMed  CAS  Google Scholar 

  17. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene 2004;23(16):2881–90.

    Article  PubMed  CAS  Google Scholar 

  18. Heinrich M, Wickel M, Schneider-Brachert W, et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 1999;18(19):5252–63.

    Article  PubMed  CAS  Google Scholar 

  19. Heinrich M, Neumeyer J, Jakob M, et al. Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 2004;11(5):550–63.

    Article  PubMed  CAS  Google Scholar 

  20. Werneburg N, Guicciardi ME, Yin XM, Gores GJ. Tumor necrosis factor-{alpha}-mediated lysosomal permeabilization is FAN and caspase 8/Bid-dependent. Am J Physiol Gastrointest Liver Physiol 2004;287(2):6436–43.

    Google Scholar 

  21. Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ. Tumor necrosis factor-related apoptosis-inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl-2 proteins. J Biol Chem 2007;282(39):28960–70.

    Article  PubMed  CAS  Google Scholar 

  22. Johansson AC, Norberg-Spaak L, Roberg K. Role of lysosomal cathepsins in naphthazarin- and Fas-induced apoptosis in oral squamous cell carcinoma cells. Acta Otolaryngol 2006;126(1):70–81.

    Article  PubMed  CAS  Google Scholar 

  23. Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 1996;15(15):3861–70.

    PubMed  CAS  Google Scholar 

  24. Bojic L, Petelin A, Stoka V, et al. Cysteine cathepsins are not involved in Fas/CD95 signalling in primary skin fibroblasts. FEBS Lett 2007;581(27):5185–90.

    Article  PubMed  CAS  Google Scholar 

  25. Foghsgaard L, Wissing D, Mauch D, et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 2001;153(5):999–1010.

    Article  PubMed  CAS  Google Scholar 

  26. Broker LE, Huisman C, Span SW, Rodriguez JA, Kruyt FA, Giaccone G. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 2004;64(1):27–30.

    Article  PubMed  Google Scholar 

  27. Li W, Yuan X, Nordgren G, et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 2000;470(1):35–9.

    Article  PubMed  CAS  Google Scholar 

  28. Guicciardi ME, Deussing J, Miyoshi H, et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 2000;106(9):1127–37.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC. Changes in intramitochondrial and cytosolic pH: Early events that modulate caspase activation during apoptosis. Nat Cell Biol 2000;2(6):318–25.

    Article  PubMed  CAS  Google Scholar 

  30. Segal MS, Beem E. Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol Cell Physiol 2001;281(4):C1196–204.

    PubMed  CAS  Google Scholar 

  31. Huc L, Rissel M, Solhaug A, et al. Multiple apoptotic pathways induced by p53-dependent acidification in benzo[a]pyrene-exposed hepatic F258 cells. J Cell Physiol 2006;208(3):527–37.

    Article  PubMed  CAS  Google Scholar 

  32. Nilsson C, Johansson U, Johansson AC, Kagedal K, Ollinger K. Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis 2006;11(7):1149–59.

    Article  PubMed  CAS  Google Scholar 

  33. De Milito A, Iessi E, Logozzi M, et al. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 2007;67(11):5408–17.

    Article  PubMed  CAS  Google Scholar 

  34. Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ. Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Physiol Gastrointest Liver Physiol 2002;283(4):G947–56.

    PubMed  CAS  Google Scholar 

  35. Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 2001;359(Pt 2):335–43.

    Article  PubMed  CAS  Google Scholar 

  36. Persson HL, Yu Z, Tirosh O, Eaton JW, Brunk UT. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radic Biol Med 2003;34(10):1295–305.

    Article  PubMed  CAS  Google Scholar 

  37. Tenopoulou M, Doulias PT, Barbouti A, Brunk U, Galaris D. Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J 2005;387(Pt 3):703–10.

    PubMed  CAS  Google Scholar 

  38. Brun A, Brunk U. Histochemical indications for lysosomal localization of heavy metals in normal rat brain and liver. J Histochem Cytochem 1970;18(11):820–7.

    Article  PubMed  CAS  Google Scholar 

  39. Ollinger K, Brunk UT. Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic Biol Med 1995;19(5):565–74.

    Article  PubMed  CAS  Google Scholar 

  40. Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C. Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med 2007;42(9):1305–16.

    Article  PubMed  CAS  Google Scholar 

  41. Gorria M, Tekpli X, Rissel M, et al. A new lactoferrin- and iron-dependent lysosomal death pathway is induced by benzo[a]pyrene in hepatic epithelial cells. Toxicol Appl Pharmacol 2008;228(2):212–24.

    Google Scholar 

  42. Persson HL, Kurz T, Eaton JW, Brunk UT. Radiation-induced cell death: Importance of lysosomal destabilization. Biochem J 2005;389(Pt 3):877–84.

    PubMed  CAS  Google Scholar 

  43. Arthur PG, Niu X, Rigby P, Steer JH, Jeffrey GP. Oxidative stress causes a decline in lysosomal integrity during hypothermic incubation of rat hepatocytes. Free Radic Biol Med 2008;44(1):24–33.

    Article  PubMed  CAS  Google Scholar 

  44. Blomgran R, Zheng L, Stendahl O. Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 2007;81(5):1213–23.

    Article  PubMed  CAS  Google Scholar 

  45. Roussi S, Gosse F,Aoude-Werner D, et al. Mitochondrial perturbation, oxidative stress and lysosomal destabilization are involved in 7beta-hydroxysitosterol and 7beta-hydroxycholesterol triggered apoptosis in human colon cancer cells. Apoptosis 2007;12(1):87–96.

    Article  PubMed  CAS  Google Scholar 

  46. Zhao M, Antunes F, Eaton JW, Brunk UT. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 2003;270(18):3778–86.

    Article  PubMed  CAS  Google Scholar 

  47. Zhao M, Eaton JW, Brunk UT. Protection against oxidant-mediated lysosomal rupture: A new anti-apoptotic activity of Bcl-2? FEBS Lett 2000;485(2–3):104–8.

    Article  CAS  Google Scholar 

  48. Zhao M, Eaton JW, Brunk UT. Bcl-2 phosphorylation is required for inhibition of oxidative stress-induced lysosomal leak and ensuing apoptosis. FEBS Lett 2001;509(3):405–12.

    Article  PubMed  CAS  Google Scholar 

  49. Kagedal K, Johansson AC, Johansson U, et al. Lysosomal membrane permeabilization during apoptosis—Involvement of Bax? Int J Exp Pathol 2005;86(5):309–21.

    Article  PubMed  Google Scholar 

  50. Guicciardi ME, Bronk SF, Werneburg NW, Yin XM, Gores GJ. Bid is upstream of lysosome-mediated caspase 2 activation in tumor necrosis factor alpha-induced hepatocyte apoptosis. Gastroenterology 2005;129(1):269–84.

    Article  PubMed  CAS  Google Scholar 

  51. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol 2006;290(6):G1339–46.

    Article  PubMed  CAS  Google Scholar 

  52. Li C, Liu Q, Li N, et al. EAPF/Phafin-2, a novel endoplasmic reticulum-associated protein, facilitates TNF-alpha-triggered cellular apoptosis through endoplasmic reticulum-mitochondrial apoptotic pathway. J Mol Med 2008;86(4):471–84.

    Google Scholar 

  53. Gowran A, Campbell VA. A role for p53 in the regulation of lysosomal permeability by Delta(9)-tetrahydrocannabinol in rat cortical neurones: Implications for neurodegeneration. J Neurochem 2008;105(4):1513–24.

    Google Scholar 

  54. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11(3):577–90.

    Article  PubMed  CAS  Google Scholar 

  55. Liu N, Raja SM, Zazzeroni F, et al. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J 2003;22(19):5313–22.

    Article  PubMed  CAS  Google Scholar 

  56. Nylandsted J, Gyrd-Hansen M, Danielewicz A, et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004;200(4):425–35.

    Article  PubMed  CAS  Google Scholar 

  57. Bivik C, Rosdahl I, Ollinger K. Hsp70 protects against UVB induced apoptosis by preventing release of cathepsins and cytochrome c in human melanocytes. Carcinogenesis 2007;28(3):537–44.

    Article  PubMed  CAS  Google Scholar 

  58. Daugaard M, Kirkegaard-Sorensen T, Ostenfeld MS, et al. Lens epithelium-derived growth factor is an Hsp70–2 regulated guardian of lysosomal stability in human cancer. Cancer Res 2007;67(6):2559–67.

    Article  PubMed  CAS  Google Scholar 

  59. Tanimura S, Hirano AI, Hashizume J, et al. Anticancer drugs up-regulate HspBP1 and thereby antagonize the prosurvival function of Hsp70 in tumor cells. J Biol Chem 2007;282(49):35430–9.

    Article  PubMed  CAS  Google Scholar 

  60. Turk B, Turk D, Turk V. Lysosomal cysteine proteases: More than scavengers. Biochim Biophys Acta 2000;1477(1–2):98–111.

    Article  PubMed  CAS  Google Scholar 

  61. Turk B, Bieth JG, Bjork I, et al. Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol Chem Hoppe Seyler 1995;376(4):225–30.

    Article  PubMed  CAS  Google Scholar 

  62. Turk B, Turk V, Turk D. Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem 1997;378(3–4):141–50.

    PubMed  CAS  Google Scholar 

  63. Mohamed MM, Sloane BF. Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer 2006;6(10):764–75.

    Article  PubMed  CAS  Google Scholar 

  64. Mort JS, Buttle DJ. Cathepsin B. Int J Biochem Cell Biol 1997;29(5):715–20.

    Article  CAS  Google Scholar 

  65. Kirschke H, Barrett AJ, Rawlings ND. Proteinases 1: Lysosomal cysteine proteinases. Protein Profile 1995;2(14):1581–643.

    PubMed  CAS  Google Scholar 

  66. Berg K, Moan J. The influence of the cysteine protease inhibitor L-trans-epoxysuccinyl-leucyl amido(4-guanidio)butane (E64) on photobiological effects of tetra(4-sulfonatophenyl)porphine. Cancer Lett 1995;88(2):227–36.

    Article  PubMed  CAS  Google Scholar 

  67. Gong Q, Chan SJ, Bajkowski AS, Steiner DF, Frankfater A. Characterization of the cathepsin B gene and multiple mRNAs in human tissues: Evidence for alternative splicing of cathepsin B pre-mRNA. DNA Cell Biol 1993;12(4):299–309.

    Article  PubMed  CAS  Google Scholar 

  68. Guicciardi ME, Miyoshi H, Bronk SF, Gores GJ. Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: Implications for therapeutic applications. Am J Pathol 2001;159(6):2045–54.

    Article  PubMed  CAS  Google Scholar 

  69. Fehrenbacher N, Gyrd-Hansen M, Poulsen B, et al. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res 2004;64(15):5301–10.

    Article  PubMed  CAS  Google Scholar 

  70. Mathiasen IS, Hansen CM, Foghsgaard L, Jaattela M. Sensitization to TNF-induced apoptosis by 1,25-dihydroxy vitamin D(3) involves up-regulation of the TNF receptor 1 and cathepsin B. Int J Cancer 2001;93(2):224–31.

    Article  PubMed  CAS  Google Scholar 

  71. Taha TA, Kitatani K, Bielawski J, Cho W, Hannun YA, Obeid LM. TNF induces the loss of sphingosine kinase-1 by a cathepsin B dependent mechanism. J Biol Chem 2005;280(17):17196–202.

    Google Scholar 

  72. Liu J, Guo Q, Chen B, Yu Y, Lu H, Li YY. Cathepsin B and its interacting proteins, bikunin and TSRC1, correlate with TNF-induced apoptosis of ovarian cancer cells OV-90. FEBS Lett 2006;580(1):245–50.

    Article  PubMed  CAS  Google Scholar 

  73. Taha TA, Osta W, Kozhaya L, et al. Down-regulation of sphingosine kinase-1 by DNA damage: Dependence on proteases and p53. J Biol Chem 2004;279(19):20546–54.

    Article  PubMed  CAS  Google Scholar 

  74. Liu JP, Liu NS, Yuan HY, Guo Q, Lu H, Li YY. Human homologue of SETA binding protein 1 interacts with cathepsin B and participates in TNF-induced apoptosis in ovarian cancer cells. Mol Cell Biochem 2006;292(1–2):189–95.

    Article  PubMed  CAS  Google Scholar 

  75. Roberts LR, Kurosawa H, Bronk SF, et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 1997;113(5):1714–26.

    Article  PubMed  CAS  Google Scholar 

  76. Faubion WA, Guicciardi ME, Miyoshi H, et al. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 1999;103(1):137–45.

    Article  PubMed  CAS  Google Scholar 

  77. Yeung BH, Huang DC, Sinicrope FA. PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells. J Biol Chem 2006;281(17):11923–32.

    Article  PubMed  CAS  Google Scholar 

  78. Sandes E, Lodillinsky C, Cwirenbaum R, Arguelles C, Casabe A, Eijan AM. Cathepsin B is involved in the apoptosis intrinsic pathway induced by bacillus Calmette-Guérin in transitional cancer cell lines. Int J Mol Med 2007;20(6):823–8.

    PubMed  CAS  Google Scholar 

  79. Yacoub A, Park MA, Gupta P, et al. Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells. Mol Cancer Ther 2008;7(2):297–313.

    Article  PubMed  CAS  Google Scholar 

  80. Baskin-Bey ES, Canbay A, Bronk SF, et al. Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia-warm reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2005;288(2):G396–402.

    Article  PubMed  CAS  Google Scholar 

  81. Yamashima T, Kohda Y, Tsuchiya K, et al. Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: A novel strategy for neuroprotection based on “calpain-cathepsin hypothesis.” Eur J Neurosci 1998;10(5):1723–33.

    Article  CAS  Google Scholar 

  82. Houseweart MK, Vilaythong A, Yin XM, Turk B, Noebels JL, Myers RM. Apoptosis caused by cathepsins does not require Bid signaling in an in vivo model of progressive myoclonus epilepsy (EPM1). Cell Death Differ 2003;10(12):1329–35.

    Article  PubMed  CAS  Google Scholar 

  83. Jones B, Roberts PJ, Faubion WA, Kominami E, Gores GJ. Cystatin A expression reduces bile salt-induced apoptosis in a rat hepatoma cell line. Am J Physiol 1998;275(4 Pt 1):G723–30.

    PubMed  CAS  Google Scholar 

  84. Castino R, Pace D, Demoz M, et al. Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas. Int J Cancer 2002;97(6):775–9.

    Article  PubMed  CAS  Google Scholar 

  85. Zhu DM, Uckun FM. Cathepsin inhibition induces apoptotic death in human leukemia and lymphoma cells. Leuk Lymphoma 2000;39(3–4):343–54.

    Article  PubMed  CAS  Google Scholar 

  86. Zhu DM, Uckun FM. Z-Phe-Gly-NHO-Bz, an inhibitor of cysteine cathepsins, induces apoptosis in human cancer cells. Clin Cancer Res 2000;6(5):2064–9.

    PubMed  CAS  Google Scholar 

  87. Tardy C, Autefage H, Garcia V, Levade T, Andrieu-Abadie N. Mannose 6-phosphorylated proteins are required for tumor necrosis factor-induced apoptosis: Defective response in I-cell disease fibroblasts. J Biol Chem 2004;279(51):52914–23.

    Article  PubMed  CAS  Google Scholar 

  88. Vasiljeva O, Korovin M, Gajda M, et al. Reduced tumour cell proliferation and delayed development of high-grade mammary carcinomas in cathepsin B-deficient mice. Oncogene 2008;127(30):4191–9.

    Google Scholar 

  89. Pham CT, Ley TJ. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci USA 1999;96(15):8627–32.

    Article  PubMed  CAS  Google Scholar 

  90. Metkar SS, Wang B, Ebbs ML, et al. Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J Cell Biol 2003;160(6):875–85.

    Article  PubMed  CAS  Google Scholar 

  91. Sutton VR, Waterhouse NJ, Browne KA, et al. Residual active granzyme B in cathepsin C-null lymphocytes is sufficient for perforin-dependent target cell apoptosis. J Cell Biol 2007;176(4):425–33.

    Article  PubMed  CAS  Google Scholar 

  92. Boland B, Campbell V. Abeta-mediated activation of the apoptotic cascade in cultured cortical neurones: A role for cathepsin-L. Neurobiol Aging 2004;25(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  93. Michallet MC, Saltel F, Flacher M, Revillard JP, Genestier L. Cathepsin-dependent apoptosis triggered by supraoptimal activation of T lymphocytes: A possible mechanism of high dose tolerance. J Immunol 2004;172(9):5405–14.

    PubMed  CAS  Google Scholar 

  94. Fujimoto K, Yamamoto T, Kitano T, Abe S. Promotion of cathepsin L activity in new spermatogonial apoptosis induced by prolactin. FEBS Lett 2002;521(1–3):43–6.

    Article  PubMed  CAS  Google Scholar 

  95. Welss T, Sun J, Irving JA, et al. Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis. Biochemistry 2003;42(24):7381–9.

    Article  PubMed  CAS  Google Scholar 

  96. Levicar N, Dewey RA, Daley E, et al. Selective suppression of cathepsin L by antisense cDNA impairs human brain tumor cell invasion in vitro and promotes apoptosis. Cancer Gene Ther 2003;10(2):141–51.

    Article  PubMed  CAS  Google Scholar 

  97. Zajc I, Hreljac I, Lah T. Cathepsin L affects apoptosis of glioblastoma cells: A potential implication in the design of cancer therapeutics. Anticancer Res 2006;26(5A):3357–64.

    PubMed  CAS  Google Scholar 

  98. Wille A, Gerber A, Heimburg A, et al. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells. Biol Chem 2004;385(7):665–70.

    Article  PubMed  CAS  Google Scholar 

  99. Ishisaka R, Utsumi T, Kanno T, et al. Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct 1999;24(6):465–70.

    Article  PubMed  CAS  Google Scholar 

  100. Vancompernolle K, Van Herreweghe F, Pynaert G, et al. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett 1998;438(3):150–8.

    Article  PubMed  CAS  Google Scholar 

  101. Stoka V, Turk B, Schendel SL, et al. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 2001;276(5):3149–57.

    Article  PubMed  CAS  Google Scholar 

  102. Saftig P, Hetman M, Schmahl W, et al. Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 1995;14(15):3599–608.

    PubMed  CAS  Google Scholar 

  103. Reid WA, Valler MJ, Kay J. Immunolocalization of cathepsin D in normal and neoplastic human tissues. J Clin Pathol 1986;39(12):1323–30.

    Article  PubMed  CAS  Google Scholar 

  104. Tang J, Wong RN. Evolution in the structure and function of aspartic proteases. J Cell Biochem 1987;33(1):53–63.

    Article  PubMed  CAS  Google Scholar 

  105. Metcalf P, Fusek M. Two crystal structures for cathepsin D: The lysosomal targeting signal and active site. EMBO J 1993;12(4):1293–302.

    PubMed  CAS  Google Scholar 

  106. Wu GS, Saftig P, Peters C, El-Deiry WS. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 1998;16(17):2177–83.

    Article  PubMed  CAS  Google Scholar 

  107. Neuzil J, Zhao M, Ostermann G, et al. Alpha-tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochem J 2002;362(Pt 3):709–15.

    Article  PubMed  CAS  Google Scholar 

  108. Conus S, Perozzo R, Reinheckel T, et al. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 2008;205(3):685–98.

    Article  PubMed  CAS  Google Scholar 

  109. Haendeler J, Popp R, Goy C, Tischler V, Zeiher AM, Dimmeler S. Cathepsin D and H2O2 stimulate degradation of thioredoxin-1: Implication for endothelial cell apoptosis. J Biol Chem 2005;280(52):42945–51.

    Article  PubMed  CAS  Google Scholar 

  110. Roberg K, Kagedal K, Ollinger K. Microinjection of cathepsin D induces caspase-dependent apoptosis in fibroblasts. Am J Pathol 2002;161(1):89–96.

    Article  PubMed  CAS  Google Scholar 

  111. Demoz M, Castino R, Cesaro P, Baccino FM, Bonelli G, Isidoro C. Endosomal-lysosomal proteolysis mediates death signalling by TNFalpha, not by etoposide, in L929 fibrosarcoma cells: Evidence for an active role of cathepsin D. Biol Chem 2002;383(7–8):1237–48.

    PubMed  CAS  Google Scholar 

  112. Roberts LR, Adjei PN, Gores GJ. Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem Biophys 1999;30(1):71–88.

    Article  PubMed  CAS  Google Scholar 

  113. Roberg K, Ollinger K. Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol 1998;152(5):1151–6.

    PubMed  CAS  Google Scholar 

  114. Ollinger K. Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Arch Biochem Biophys 2000;373(2):346–51.

    Article  PubMed  CAS  Google Scholar 

  115. Takuma K, Kiriu M, Mori K, et al. Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochem Int 2003;42(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  116. Yin L, Stearns R, Gonzalez-Flecha B. Lysosomal and mitochondrial pathways in H2O2-induced apoptosis of alveolar type II cells. J Cell Biochem 2005;94(3):433–45.

    Article  PubMed  CAS  Google Scholar 

  117. Lee DC, Mason CW, Goodman CB, et al. Hydrogen peroxide induces lysosomal protease alterations in PC12 cells. Neurochem Res 2007;32(9):1499–510.

    Article  PubMed  CAS  Google Scholar 

  118. Johansson AC, Steen H, Ollinger K, Roberg K. Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 2003;10(11):1253–9.

    Article  PubMed  CAS  Google Scholar 

  119. Zang Y, Beard RL, Chandraratna RA, Kang JX. Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ 2001;8(5):477–85.

    Article  PubMed  CAS  Google Scholar 

  120. Li X, Rayford H, Shu R, Zhuang J, Uhal BD. Essential role for cathepsin D in bleomycin-induced apoptosis of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004;287(1):L46–51.

    Article  PubMed  CAS  Google Scholar 

  121. Thibodeau MS, Giardina C, Knecht DA, Helble J, Hubbard AK. Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 2004;80(1):34–48.

    Article  PubMed  CAS  Google Scholar 

  122. Isahara K, Ohsawa Y, Kanamori S, et al. Regulation of a novel pathway for cell death by lysosomal aspartic and cysteine proteinases. Neuroscience 1999;91(1):233–49.

    Article  PubMed  CAS  Google Scholar 

  123. Tardy C, Tyynela J, Hasilik A, Levade T, Andrieu-Abadie N. Stress-induced apoptosis is impaired in cells with a lysosomal targeting defect but is not affected in cells synthesizing a catalytically inactive cathepsin D. Cell Death Differ 2003;10(9):1090–100.

    Article  PubMed  CAS  Google Scholar 

  124. Reiners JJ, Caruso JA, Mathieu P, Chelladurai B, Yin X, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 2002;9(9):934–44.

    Article  PubMed  CAS  Google Scholar 

  125. Beaujouin M, Baghdiguian S, Glondu-Lassis M, Berchem G, Liaudet-Coopman E. Overexpression of both catalytically active and -inactive cathepsin D by cancer cells enhances apoptosis-dependent chemo-sensitivity. Oncogene 2006;25(13):1967–73.

    Article  PubMed  CAS  Google Scholar 

  126. Conner GE. Cathepsin D. In: Barrett AJ, Rawlings ND, and Woessner JF, eds. Handbook of Proteolytic Enzymes. 2d ed. Amsterdam: Elsevier Academic Press, 2004.

    Google Scholar 

  127. Miao Q, Sun Y, Wei T, et al. Chymotrypsin B cached in rat liver lysosomes and involved in apoptotic regulation through a mitochondrial pathway. J Biol Chem 2008;283(13):8218–28.

    Google Scholar 

  128. Lane SC, Jolly RD, Schmechel DE, Alroy J, Boustany RM. Apoptosis as the mechanism of neurodegeneration in Batten's disease. J Neurochem 1996;67(2):677–83.

    Article  PubMed  CAS  Google Scholar 

  129. Camp LA, Hofmann SL. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem 1993;268(30):22566–74.

    PubMed  CAS  Google Scholar 

  130. Zhang Z, Butler JD, Levin SW, Wisniewski KE, Brooks SS, Mukherjee AB. Lysosomal ceroid depletion by drugs: Therapeutic implications for a hereditary neurodegenerative disease of childhood. Nat Med 2001;7(4):478–84.

    Article  PubMed  CAS  Google Scholar 

  131. Cho S, Dawson PE, Dawson G. Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. J Neurosci Res 2000;62(2):234–40.

    Article  PubMed  CAS  Google Scholar 

  132. Dawson G, Dawson SA, Marinzi C, Dawson PE. Anti-tumor promoting effects of palmitoyl: Protein thioesterase inhibitors against a human neurotumor cell line. Cancer Lett 2002;187(1–2):163–8.

    Article  PubMed  CAS  Google Scholar 

  133. Kim SJ, Zhang Z, Hitomi E, Lee YC, Mukherjee AB. Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet 2006;15(11):1826–34.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang Z, Lee YC, Kim SJ, et al. Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet 2006;15(2):337–46.

    Article  PubMed  CAS  Google Scholar 

  135. Kim SJ, Zhang Z, Lee YC, Mukherjee AB. Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL. Hum Mol Genet 2006;15(10):1580–6.

    Article  PubMed  CAS  Google Scholar 

  136. Korey CA, MacDonald ME. An over-expression system for characterizing Ppt1 function in Drosophila. BMC Neurosci 2003;4(1):30.

    Article  PubMed  Google Scholar 

  137. Dhar S, Bitting RL, Rylova SN, et al. Flupirtine blocks apoptosis in Batten patient lymphoblasts and in human postmitotic CLN3- and CLN2-deficient neurons. Ann Neurol 2002;51(4):448–66.

    Article  PubMed  CAS  Google Scholar 

  138. Roberg K, Johansson U, Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 1999;27(11–12):1228–37.

    Article  PubMed  CAS  Google Scholar 

  139. Bidere N, Lorenzo HK, Carmona S, et al. Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 2003;278(33):31401–11.

    Article  PubMed  CAS  Google Scholar 

  140. Boya P, Andreau K, Poncet D, et al. Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 2003;197(10):1323–34.

    Article  PubMed  CAS  Google Scholar 

  141. Boya P, Gonzalez-Polo RA, Poncet D, et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 2003;22(25):3927–36.

    Article  PubMed  CAS  Google Scholar 

  142. Cirman T, Oresic K, Mazovec GD, et al. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004;279(5):3578–87.

    Article  PubMed  CAS  Google Scholar 

  143. Erdal H, Berndtsson M, Castro J, Brunk U, Shoshan MC, Linder S. Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci USA 2005;102(1):192–7.

    Article  PubMed  CAS  Google Scholar 

  144. Foghsgaard L, Lademann U, Wissing D, Poulsen B, Jaattela M. Cathepsin B mediates tumor necrosis factor-induced arachidonic acid release in tumor cells. J Biol Chem 2002;277(42):39499–506.

    Article  PubMed  CAS  Google Scholar 

  145. Vasiljeva O, Turk B. Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumour invasion. Biochimie 2008;90(2):380–6.

    Article  PubMed  CAS  Google Scholar 

  146. Gocheva V, Zeng W, Ke D, et al. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 2006;20(5):543–56.

    Article  PubMed  CAS  Google Scholar 

  147. Fan C, Wang W, Zhao B, Zhang S, Miao J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 2006;14(9):3218–22.

    Article  PubMed  CAS  Google Scholar 

  148. Charley M, Thiele DL, Bennett M, Lipsky PE. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester. J Clin Invest 1986;78(5):1415–20.

    Article  PubMed  CAS  Google Scholar 

  149. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 2000;97(14):7871–6.

    Article  PubMed  CAS  Google Scholar 

  150. Nylandsted J, Wick W, Hirt UA, et al. Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res 2002;62(24):7139–42.

    PubMed  CAS  Google Scholar 

  151. Felbor U, Kessler B, Mothes W, et al. Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc Natl Acad Sci USA 2002;99(12):7883–8.

    Article  PubMed  CAS  Google Scholar 

  152. Nakanishi H, Zhang J, Koike M, et al. Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J Neurosci 2001;21(19):7526–33.

    PubMed  CAS  Google Scholar 

  153. Koike M, Shibata M, Ohsawa Y, et al. Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci 2003;22(2):146–61.

    Article  PubMed  CAS  Google Scholar 

  154. Shacka JJ, Roth KA. Cathepsin D deficiency and NCL/Batten disease: There's more to death than apoptosis. Autophagy 2007;3(5):474–6.

    PubMed  CAS  Google Scholar 

  155. Rakoczy PE, Zhang D, Robertson T, et al. Progressive age-related changes similar to age-related macular degeneration in a transgenic mouse model. Am J Pathol 2002;161(4):1515–24.

    Article  PubMed  CAS  Google Scholar 

  156. Tyynela J, Sohar I, Sleat DE, et al. A mutation in the ovine cathepsin D gene causes a congenital lysosomal storage disease with profound neurodegeneration. EMBO J 2000;19(12):2786–92.

    Article  PubMed  CAS  Google Scholar 

  157. Sohar I, Sleat DE, Jadot M, Lobel P. Biochemical characterization of a lysosomal protease deficient in classical late infantile neuronal ceroid lipofuscinosis (LINCL) and development of an enzyme-based assay for diagnosis and exclusion of LINCL in human specimens and animal models. J Neurochem 1999;73(2):700–11.

    Article  PubMed  CAS  Google Scholar 

  158. Gupta P, Soyombo AA, Atashband A, et al. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci USA 2001;98(24):13566–71.

    Article  PubMed  CAS  Google Scholar 

  159. D'Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H. Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci USA 1982;79(15):4535–9.

    Article  PubMed  Google Scholar 

  160. Pennacchio LA, Lehesjoki AE, Stone NE, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 1996;271(5256):1731–4.

    Article  PubMed  CAS  Google Scholar 

  161. Koike M, Nakanishi H, Saftig P, et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 2000;20(18):6898–906.

    PubMed  CAS  Google Scholar 

  162. Lyly A, von Schantz C, Salonen T, et al. Glycosylation, transport, and complex formation of palmitoyl protein thioesterase 1 (PPT1)—Distinct characteristics in neurons. BMC Cell Biol 2007;8:22.

    Article  PubMed  CAS  Google Scholar 

  163. Liu MJ, Liu ML, Shen YF, et al. Transgenic mice with neuron-specific overexpression of HtrA2/Omi suggest a neuroprotective role for HtrA2/Omi. Biochem Biophys Res Commun 2007;362(2):295–300.

    Article  PubMed  CAS  Google Scholar 

  164. Guicciardi ME, Bronk SF, Werneburg NW, Gores GJ. cFLIPL prevents TRAIL-induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. Am J Physiol Gastrointest Liver Physiol 2007;292(5):G1337–46.

    Article  PubMed  CAS  Google Scholar 

  165. Nagaraj NS, Vigneswaran N, Zacharias W. Hypoxia inhibits TRAIL-induced tumor cell apoptosis: Involvement of lysosomal cathepsins. Apoptosis 2007;12(1):125–39.

    Article  PubMed  CAS  Google Scholar 

  166. Paris C, Bertoglio J, Breard J. Lysosomal and mitochondrial pathways in miltefosine-induced apoptosis in U937 cells. Apoptosis 2007;12(7):1257–67.

    Article  PubMed  CAS  Google Scholar 

  167. Paquet C, Sane AT, Beauchemin M, Bertrand R. Caspase- and mitochondrial dysfunction-dependent mechanisms of lysosomal leakage and cathepsin B activation in DNA damage-induced apoptosis. Leukemia 2005;19(5):784–91.

    Article  PubMed  CAS  Google Scholar 

  168. Emert-Sedlak L, Shangary S, Rabinovitz A, Miranda MB, Delach SM, Johnson DE. Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol Cancer Ther 2005;4(5):733–42.

    Article  PubMed  CAS  Google Scholar 

  169. Baumgartner HK, Gerasimenko JV, Thorne C, et al. Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins. Am J Physiol Gastrointest Liver Physiol 2007;293(1):G296–307.

    Article  PubMed  CAS  Google Scholar 

  170. Barbosa CM, Oliveira CR, Nascimento FD, et al. Biphosphinic palladacycle complex mediates lysosomal-membrane permeabilization and cell death in K562 leukaemia cells. Eur J Pharmacol 2006;542(1–3):37–47.

    Article  PubMed  CAS  Google Scholar 

  171. Fedorowski A, Steciwko A, Rabczynski J. Serum cathepsin B activity during regression of Morris hepatoma 5123 D. Med Sci Monit 2004;10(5):BR144–50.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Andrieu-Abadie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Andrieu-Abadie, N. (2009). Lysosomal Proteases in Cell Death. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_29

Download citation

Publish with us

Policies and ethics