Skip to main content

Cardiovascular Magnetic Resonance Imaging

  • Chapter
  • First Online:
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Cardiovascular magnetic resonance imaging (MRI), or simply cardiac MR, is considered the “gold” standard for noninvasively characterizing cardiac function and viability, having 3D capabilities and a high spatial and temporal resolution. This imaging modality has proven to be an invaluable tool in diagnosing complex cardiomyopathies. Several clinical uses of cardiac MR include: (1) measuring myocardial blood flow; (2) the ability to differentiate between viable and nonviable myocardial tissue; (3) depicting the structure of peripheral and coronary vessels (magnetic resonance angiography); (4) measuring blood flow velocities (MR velocity mapping); (5) examining metabolic energetics (MR spectroscopy); (6) assessing myocardial contractile properties (multislice, multiphase cine imaging, MR tagging); and/or (7) guiding interventional procedures with real-time imaging (interventional MRI). Considering the expansive capabilities of cardiac MR, a condensed review of the concepts and applications of cardiac MR are provided in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pettigrew RI. Dynamic cardiac MR imaging. Techniques and applications. Radiol Clin North Am 1989;27:1183–203.

    CAS  Google Scholar 

  2. Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MG, Axel L. Global cardiac function using fast breath-hold MRI: Validation of new acquisition and analysis techniques. Magn Reson Med 1997;37:683–92.

    Article  PubMed  CAS  Google Scholar 

  3. Sakuma H, Fujita N, Foo TK, et al. Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 1993;188:377–80.

    PubMed  CAS  Google Scholar 

  4. Anand IS, Florea VG, Solomon SD, Konstam MA, Udelson JE. Noninvasive assessment of left ventricular remodeling: Concepts, techniques, and implications for clinical trials. J Card Fail 2002;8:S452–64.

    Article  PubMed  Google Scholar 

  5. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 1991;178:357–60.

    PubMed  CAS  Google Scholar 

  6. Bluemke DA, Boxerman JL, Atalar E, McVeigh ER. Segmented K-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. AJR Am J Roentgenol 1997;169:395–400.

    CAS  Google Scholar 

  7. Bluemke DA, Boxerman JL, Mosher T, Lima JA. Segmented K-space cine breath-hold cardiovascular MR imaging: Part 2. Evaluation of aortic vasculopathy. AJR Am J Roentgenol 1997;169:401–7.

    CAS  Google Scholar 

  8. Chien D, Edelman RR. Ultrafast imaging using gradient echoes. Magn Reson Q 1991;7:31–56.

    PubMed  CAS  Google Scholar 

  9. Oppelt A, Graumann R, Barfuss H, Fischer H, Hartl W, Schajor W. FISP: A new fast MRI sequence. Electromedica (Engl. Ed.) 1986;54:15–8.

    Google Scholar 

  10. Zur Y, Wood ML, Neuringer LJ. Motion-insensitive, steady-state free precession imaging. Magn Reson Med 1990;16:444–59.

    Article  PubMed  CAS  Google Scholar 

  11. Pereles FS, Kapoor V, Carr JC, et al. Usefulness of segmented trueFISP cardiac pulse sequence in evaluation of congenital and acquired adult cardiac abnormalities. AJR Am J Roentgenol 2001;177:1155–60.

    PubMed  CAS  Google Scholar 

  12. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU. Steady-state free precession magnetic resonance imaging of the heart: Comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 2001;14:230–6.

    Article  PubMed  CAS  Google Scholar 

  13. Francois CJ, Fieno DS, Shors SM, Finn JP. Left ventricular mass: Manual and automatic segmentation of true FISP and FLASH cine MR images in dogs and pigs. Radiology 2004;230:389–95.

    Article  PubMed  Google Scholar 

  14. Shors SM, Fung CW, Francois CJ, Finn JP, Fieno DS. Accurate quantification of right ventricular mass at MR imaging by using cine true fast imaging with steady-state precession: Study in dogs. Radiology 2004;230:383–8.

    Article  PubMed  Google Scholar 

  15. Yang X, Atalar E, Li D, et al. Magnetic resonance imaging permits in vivo monitoring of catheter-based vascular gene delivery. Circulation 2001;104:1588–90.

    Article  PubMed  CAS  Google Scholar 

  16. Weiger M., Pruessmann KP, Boesiger P. Cardiac real-time imaging using SENSE. SENSitivity Encoding scheme. Magn Reson Med 2000;43:177–84.

    CAS  Google Scholar 

  17. Penicka M, Bartunek J, Wijns W, et al. Tissue doppler imaging predicts recovery of left ventricular function after recanalization of an occluded coronary artery. J Am Coll Cardiol 2004;43:85–91.

    Article  PubMed  Google Scholar 

  18. Sanz G, Castaner A, Betriu A, et al. Determinants of prognosis in survivors of myocardial infarction: A prospective clinical angiographic study. N Engl J Med 1982;306:1065–70.

    Article  PubMed  CAS  Google Scholar 

  19. Weiss JL, Marino PN, Shapiro EP. Myocardial infarct expansion: Recognition, significance and pathology. Am J Cardiol 1991;68:35–40D.

    Article  Google Scholar 

  20. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: Relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981;63:739–46.

    Article  PubMed  CAS  Google Scholar 

  21. Sasayama S, Franklin D, Ross J Jr, Kemper WS, McKown D. Dynamic changes in left ventricular wall thickness and their use in analyzing cardiac function in the conscious dog. Am J Cardiol 1976;38:870–9.

    Article  PubMed  CAS  Google Scholar 

  22. Azhari H, Weiss JL, Rogers WJ, Siu CO, Shapiro EP. A noninvasive comparative study of myocardial strains in ischemic canine hearts using tagged MRI in 3-D. Am J Physiol 1995;268:H1918–26.

    PubMed  CAS  Google Scholar 

  23. Gotte MJ, van Rossum AC, Twisk JWR, Kuijer JPA, Marcus JT, Visser CA. Quantification of regional contractile function after infarction: Strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 2001;37:808–17.

    Article  PubMed  Google Scholar 

  24. Rickers C, Gallegos R, Seethamraju RT, et al. Applications of magnetic resonance imaging for cardiac stem cell therapy. J Interv Cardiol 2004;17:37–46.

    Article  PubMed  Google Scholar 

  25. Axel L, Goncalves RC, Bloomgarden D. Regional heart wall motion: Two-dimensional analysis and functional imaging with MR imaging. Radiology 1992;183:745–50.

    PubMed  CAS  Google Scholar 

  26. Clark NR, Reichek N, Bergey P, et al. Circumferential myocardial shortening in the normal human left ventricle. Assessment by magnetic resonance imaging using spatial modulation of magnetization. Circulation 1991;84:67–74.

    CAS  Google Scholar 

  27. McVeigh ER. MRI of myocardial function: Motion tracking techniques. Magn Reson Imaging 1996;14:137–50.

    Article  PubMed  CAS  Google Scholar 

  28. McVeigh ER, Atalar E. Cardiac tagging with breath-hold cine MRI. Magn Reson Med 1992;28:318–27.

    Article  PubMed  CAS  Google Scholar 

  29. McVeigh ER, Zerhouni EA. Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 1991;180:677–83.

    PubMed  CAS  Google Scholar 

  30. Koenig SH, Spiller M, Brown RD III, Wolf GL. Relaxation of water protons in the intra- and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 1986;3:791–5.

    Article  PubMed  CAS  Google Scholar 

  31. Strich G, Hagan PL, Gerber KH, Slutsky RA. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology 1985;154:723–6.

    PubMed  CAS  Google Scholar 

  32. Braunwald E, ed. Heart disease: A textbook of cardiovascular medicine. Philadelphia, PA: W.B. Saunders Company, 1997.

    Google Scholar 

  33. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 1995;92:1117–25.

    CAS  Google Scholar 

  34. Tsekos NV, Zhang Y, Merkle H, et al. Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization preparation. Magn Reson Med 1995;34:530–6.

    Article  PubMed  CAS  Google Scholar 

  35. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999;100:1992–2002.

    PubMed  CAS  Google Scholar 

  36. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218:215–23.

    PubMed  CAS  Google Scholar 

  37. Bello D, Shah DJ, Farah GM, et al. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 2003;108:1945–53.

    Article  PubMed  CAS  Google Scholar 

  38. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  39. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: Comparison with positron emission tomography. Circulation 2002;105:162–7.

    Article  PubMed  Google Scholar 

  40. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: An imaging study. Lancet 2003;361:374–9.

    Article  PubMed  Google Scholar 

  41. Lekx KS, Prato FS, Sykes J, Wisenberg G. The partition coefficient of Gd-DTPA reflects maintained tissue viability in a canine model of chronic significant coronary stenosis. J Cardiovasc Magn Reson 2004;6:33–42.

    Article  PubMed  Google Scholar 

  42. Tong CY, Prato FS, Wisenberg G, et al. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn Reson Med 1993;30:337–46.

    Article  PubMed  CAS  Google Scholar 

  43. Wendland MF, Saeed M, Bremerich J, Arheden H, Higgins CB. Thallium-like test for myocardial viability with MnDPDP-enhanced MRI. Acad Radiol 2002;9 Suppl 1:S82–3.

    Article  Google Scholar 

  44. Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA. Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 1999;100:185–92.

    PubMed  CAS  Google Scholar 

  45. Duprez DA, Swingen C, Sih R, Lefebvre T, Kaiser DR, Jerosch-Herold M. Heterogeneous remodelling of the ascending and descending aorta with age. J Hum Hypertens 2007;21:689–91.

    Article  PubMed  CAS  Google Scholar 

  46. Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol 1998;274:H1627–34.

    PubMed  CAS  Google Scholar 

  47. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 1995;269:H571–82.

    PubMed  CAS  Google Scholar 

  48. Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 1969;24:339–47.

    Google Scholar 

  49. Ingels NB Jr. Myocardial fiber architecture and left ventricular function. Technol Health Care 1997;5:45–52.

    PubMed  Google Scholar 

  50. Rijcken J, Bovendeerd PH, Schoofs AJ, van Campen DH, Arts T. Optimization of cardiac fiber orientation for homogeneous fiber strain at beginning of ejection. J Biomech 1997;30:1041–9.

    Article  PubMed  CAS  Google Scholar 

  51. Rijcken J, Bovendeerd PH, Schoofs AJ, van Campen DH, Arts T. Optimization of cardiac fiber orientation for homogeneous fiber strain during ejection. Ann Biomed Eng 1999;27:289–97.

    Article  PubMed  CAS  Google Scholar 

  52. Sallin EA. Fiber orientation and ejection fraction in the human left ventricle. Biophys J 1969;9:954–64.

    Article  PubMed  CAS  Google Scholar 

  53. Tomioka H, Liakopoulos OJ, Buckberg GD, Hristov N, Tan Z, Trummer G. The effect of ventricular sequential contraction on helical heart during pacing: High septal pacing versus biventricular pacing. Eur J Cardiothorac Surg 2006;29:S198–206.

    Article  PubMed  Google Scholar 

  54. Tseng WY, Reese TG, Weisskoff RM, Brady TJ, Wedeen VJ. Myocardial fiber shortening in humans: Initial results of MR imaging. Radiology 2000;216:128–39.

    PubMed  CAS  Google Scholar 

  55. Van Der Toorn A, Barenbrug P, Snoep G, et al. Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI tagging. Am J Physiol Heart Circ Physiol 2002;283:H1609–15.

    Google Scholar 

  56. Shapiro EP, Rademakers FE. Importance of oblique fiber orientation for left ventricular wall deformation. Technol Health Care 1997;5:21–8.

    PubMed  CAS  Google Scholar 

  57. Tseng WY, Wedeen VJ, Reese TG, Smith RN, Halpern EF. Diffusion tensor MRI of myocardial fibers and sheets: Correspondence with visible cut-face texture. J Magn Reson Imaging 2003;17:31–42.

    Article  PubMed  Google Scholar 

  58. Helm PA, Tseng HJ, Younes L, McVeigh ER, Winslow RL. Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn Reson Med 2005;54:850–9.

    Article  PubMed  Google Scholar 

  59. Scollan DF, Holmes A, Zhang J, Winslow RL. Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging. Ann Biomed Eng 2000;28:934–44.

    Article  PubMed  CAS  Google Scholar 

  60. Geerts L, Bovendeerd P, Nicolay K, Arts T. Characterization of the normal cardiac myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol Heart Circ Physiol 2002;283:H139–45.

    PubMed  CAS  Google Scholar 

  61. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 1994;103:247–54.

    Article  PubMed  CAS  Google Scholar 

  62. Garrido L, Wedeen VJ, Kwong KK, Spencer UM, Kantor HL. Anisotropy of water diffusion in the myocardium of the rat. Circ Res 1994;74:789–93.

    PubMed  CAS  Google Scholar 

  63. Holmes AA, Scollan DF, Winslow RL. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn Reson Med 2000;44:157–61.

    Article  PubMed  CAS  Google Scholar 

  64. Scollan DF, Holmes A, Winslow R, Forder J. Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 1998;275:H2308–18.

    PubMed  CAS  Google Scholar 

  65. Helm P, Beg MF, Miller MI, Winslow RL. Measuring and mapping cardiac fiber and laminar architecture using diffusion tensor MR imaging. Ann N Y Acad Sci 2005;1047:296–307.

    Article  PubMed  Google Scholar 

  66. Dou J, Tseng WY, Reese TG, Wedeen VJ. Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo. Magn Reson Med 2003;50:107–13.

    Article  PubMed  Google Scholar 

  67. Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore RE, Wedeen VJ. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med 1995;34:786–91.

    Article  PubMed  CAS  Google Scholar 

  68. Rohmer D, Sitek A, Gullberg GT. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol 2007;42:777–89.

    Article  PubMed  Google Scholar 

  69. Tseng WY, Dou J, Reese TG, Wedeen VJ. Imaging myocardial fiber disarray and intramural strain hypokinesis in hypertrophic cardiomyopathy with MRI. J Magn Reson Imaging 2006;23:1–8.

    Article  PubMed  Google Scholar 

  70. Chen J, Song SK, Liu W, et al. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor MRI. Am J Physiol Heart Circ Physiol 2003;285:H946–54.

    PubMed  CAS  Google Scholar 

  71. Wu MT, Tseng WY, Su MY, et al. Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: Correlation with viability and wall motion. Circulation 2006;114:1036–45.

    Article  PubMed  Google Scholar 

  72. Lardo AC. Real-time magnetic resonance imaging: Diagnostic and interventional applications. Pediatr Cardiol 2000;21:80–98.

    Article  PubMed  CAS  Google Scholar 

  73. Kerr AB, Pauly JM, Hu BS, et al. Real-time interactive MRI on a conventional scanner. Magn Reson Med 1997;38:355–67.

    Article  PubMed  CAS  Google Scholar 

  74. Serfaty JM, Yang X, Foo TK, Kumar A, Derbyshire A, Atalar E. MRI-guided coronary catheterization and PTCA: A feasibility study on a dog model. Magn Reson Med 2003;49:258–63.

    Article  PubMed  Google Scholar 

  75. Lardo AC, McVeigh ER, Jumrussirikul P, et al. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 2000;102:698–705.

    PubMed  CAS  Google Scholar 

  76. Atalar E, Bottomley PA, Ocali O, et al. High resolution intravascular MRI and MRS by using a catheter receiver coil. Magn Reson Med 1996;36:596–605.

    Article  PubMed  CAS  Google Scholar 

  77. Moore P. MRI-guided congenital cardiac catheterization and intervention: The future? Catheter Cardiovasc Interv 2005;66:1–8.

    Article  PubMed  Google Scholar 

  78. McVeigh ER, Guttman MA, Lederman RJ, et al. Real-time interactive MRI-guided cardiac surgery: Aortic valve replacement using a direct apical approach. Magn Reson Med 2006;56:958–64.

    Article  PubMed  Google Scholar 

  79. Nazarian S, Roguin A, Zviman MM, et al. Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 Tesla. Circulation 2006;114:1277–84.

    Article  PubMed  Google Scholar 

  80. Roka A, Simor T, Vago H, Minorics C, Acsady G, Merkely B. Magnetic resonance imaging-based biventricular pacemaker upgrade. Pacing Clin Electrophysiol 2004;27:1011–3.

    Article  PubMed  Google Scholar 

  81. Sommer T, Vahlhaus C, Lauck G, et al. MR imaging and cardiac pacemakers: In-vitro evaluation and in-vivo studies in 51 patients at 0.5 T. Radiology 2000;215:869–79.

    PubMed  CAS  Google Scholar 

  82. Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K. Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 1997;134:467–73.

    Article  PubMed  CAS  Google Scholar 

  83. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 2001;13:105–14.

    Article  PubMed  CAS  Google Scholar 

  84. Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: Using a safety index. Magn Reson Med 2002;47:187–93.

    Article  PubMed  Google Scholar 

  85. Houlind K, Eschen O, Pedersen EM, Jensen T, Hasenkam JM, Paulsen PK. Magnetic resonance imaging of blood velocity distribution around St. Jude medical aortic valves in patients. J Heart Valve Dis 1996;5:511–7.

    CAS  Google Scholar 

  86. Walker PG, Pedersen EM, Oyre S, et al. Magnetic resonance velocity imaging: A new method for prosthetic heart valve study. J Heart Valve Dis 1995;4:296–307.

    PubMed  CAS  Google Scholar 

  87. Botnar R, Nagel E, Scheidegger MB, Pedersen EM, Hess O, Boesiger P. Assessment of prosthetic aortic valve performance by magnetic resonance velocity imaging. Magma 2000;10:18–26.

    Article  PubMed  CAS  Google Scholar 

  88. Wyman BT, Hunter WC, Prinzen FW, Faris OP, McVeigh ER. Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 2002;282:H372–9.

    PubMed  CAS  Google Scholar 

  89. van der Geest RJ, de Roos A, van der Wall EE, Reiber JH. Quantitative analysis of cardiovascular MR images. Int J Card Imaging 1997;13:247–58.

    Article  PubMed  Google Scholar 

  90. van der Geest RJ, Lelieveldt BP, Reiber JH. Quantification of global and regional ventricular function in cardiac magnetic resonance imaging. Top Magn Reson Imaging 2000;11:348–58.

    Article  PubMed  Google Scholar 

  91. van der Geest RJ, Reiber JH. Quantification in cardiac MRI. J Magn Reson Imaging 1999;10:602–8.

    Article  PubMed  Google Scholar 

  92. Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell'Italia LJ. Left ventricular mass and volume: Fast calculation with guide-point modeling on MR images. Radiology 2000;216:597–602.

    PubMed  CAS  Google Scholar 

  93. Swingen CM, Seethamraju RT, Jerosch-Herold M. Feedback-assisted three-dimensional reconstruction of the left ventricle with MRI. J Magn Reson Imaging 2003;17:528–37.

    Article  PubMed  Google Scholar 

  94. Swingen C, Wang X, Jerosch-Herold M. Evaluation of myocardial volume heterogeneity during end-diastole and end-systole using cine MRI. J Cardiovasc Magn Reson 2004;6:829–35.

    Article  PubMed  Google Scholar 

  95. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006–15.

    CAS  Google Scholar 

  96. Baer FM, Voth E, LaRosee K, et al. Comparison of dobutamine transesophageal echocardiography and dobutamine magnetic resonance imaging for detection of residual myocardial viability. Am J Cardiol 1996;78:415–9.

    Article  PubMed  CAS  Google Scholar 

  97. Nagel E, Lehmkuhl HB, Bocksch W, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: Comparison with dobutamine stress echocardiography. Circulation 1999;99:763–70.

    PubMed  CAS  Google Scholar 

  98. Matheijssen NA, de Roos A, Doornbos J, Reiber JH, Waldman GJ, van der Wall EE. Left ventricular wall motion analysis in patients with acute myocardial infarction using magnetic resonance imaging. Magn Reson Imaging 1993;11:485–92.

    Article  PubMed  Google Scholar 

  99. Holman ER, Vliegen HW, van der Geest RJ, et al. Quantitative analysis of regional left ventricular function after myocardial infarction in the pig assessed with cine magnetic resonance imaging. Magn Reson Med 1995;34:161–9.

    Article  PubMed  CAS  Google Scholar 

  100. Nagel E, Fleck E. Functional MRI in ischemic heart disease based on detection of contraction abnormalities. J Magn Reson Imaging 1999;10:411–7.

    Article  PubMed  CAS  Google Scholar 

  101. Sheehan FH, Bolson EL, Dodge HT, Mathey DG, Schofer J, Woo HW. Advantages and applications of the centerline method for characterizing regional ventricular function. Circulation 1986;74:293–305.

    Article  PubMed  CAS  Google Scholar 

  102. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 1999;42:1048–60.

    Article  PubMed  CAS  Google Scholar 

  103. Osman NF, McVeigh ER, Prince JL. Imaging heart motion using harmonic phase MRI. IEEE Trans Med Imaging 2000;19:186–202.

    Article  PubMed  CAS  Google Scholar 

  104. Osman NF, Prince JL. Visualizing myocardial function using HARP MRI. Phys Med Biol 2000;45:1665–82.

    Article  PubMed  CAS  Google Scholar 

  105. Kraitchman D, Sampath S, Derbyshire JA, Heldman AW, Prince JL, Osman NF. Detecting the onset of ischemia using real-time HARP. Proceedings of the International Society of Magnetic Resonance in Medicine 2001.

    Google Scholar 

  106. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–42.

    Article  PubMed  Google Scholar 

  107. Thompson HK Jr, Starmer CF, Whalen RE, McIntosh HD. Indicator transit time considered as a gamma variate. Circ Res 1964;14:502–15.

    PubMed  Google Scholar 

  108. Al-Saadi N, Nagel E, Gross M, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 2000;101:1379–83.

    PubMed  CAS  Google Scholar 

  109. Al-Saadi N, Nagel E, Gross M, et al. Improvement of myocardial perfusion reserve early after coronary intervention: Assessment with cardiac magnetic resonance imaging. J Am Coll Cardiol 2000;36:1557–64.

    Article  PubMed  CAS  Google Scholar 

  110. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346:1948–53.

    Article  PubMed  Google Scholar 

  111. Schwitter J, Nanz D, Kneifel S, et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: A comparison with positron emission tomography and coronary angiography. Circulation 2001;103:2230–5.

    PubMed  CAS  Google Scholar 

  112. Ibrahim T, Nekolla SG, Schreiber K, et al. Assessment of coronary flow reserve: Comparison between contrast-enhanced magnetic resonance imaging and positron emission tomography. J Am Coll Cardiol 2002;39:864–70.

    Article  PubMed  Google Scholar 

  113. Jerosch-Herold M, Hu X, Murthy NS, Rickers C, Stillman AE. Magnetic resonance imaging of myocardial contrast enhancement with MS-325 and its relation to myocardial blood flow and the perfusion reserve. J Magn Reson Imaging 2003;18:544–54.

    Article  PubMed  Google Scholar 

  114. Jerosch-Herold M, Seethamraju RT, Swingen CM, Wilke NM, Stillman AE. Analysis of myocardial perfusion MRI. J Magn Reson Imaging 2004;19:758–70.

    Article  PubMed  Google Scholar 

  115. Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys 2002;29:886–97.

    Article  PubMed  Google Scholar 

  116. Jerosch-Herold M, Wilke N, Wang Y, et al. Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging 1999;15:453–64.

    Article  CAS  Google Scholar 

  117. Baer FM, Theissen P, Schneider CA, et al. MRI assessment of myocardial viability: Comparison with other imaging techniques. Rays 1999;24:96–108.

    PubMed  CAS  Google Scholar 

  118. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  119. Lee KS, Marwick TH, Cook SA, et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687–94.

    CAS  Google Scholar 

  120. Pagley PR, Beller GA, Watson DD, Gimple LW, Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation 1997;96:793–800.

    PubMed  CAS  Google Scholar 

  121. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: Distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36:1985–91.

    Article  PubMed  CAS  Google Scholar 

  122. Beek AM, Kuhl HP, Bondarenko O, et al. Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 2003;42:895–901.

    Article  PubMed  Google Scholar 

  123. Mahrholdt H, Wagner A, Parker M, et al. Relationship of contractile function to transmural extent of infarction in patients with chronic coronary artery disease. J Am Coll Cardiol 2003;42:505–12.

    Article  PubMed  Google Scholar 

  124. Marino P, Zanolla L, Zardini P. Effect of streptokinase on left ventricular modeling and function after myocardial infarction: The GISSI (Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico) Trial. J Am Coll Cardiol 1989;14:1149–58.

    Article  PubMed  CAS  Google Scholar 

  125. Sheehan FH, Doerr R, Schmidt WG, et al. Early recovery of left ventricular function after thrombolytic therapy for acute myocardial infarction: An important determinant of survival. J Am Coll Cardiol 1988;12:289–300.

    Article  PubMed  CAS  Google Scholar 

  126. Gerber BL, Garot J, Bluemke DA, Wu KC, Lima JA. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 2002;106:1083–9.

    Article  PubMed  Google Scholar 

  127. Kolipaka A, Chatzimavroudis GP, White RD, O'Donnell TP, Setser RM. Segmentation of non-viable myocardium in delayed enhancement magnetic resonance images. Int J Cardiovasc Imaging 2005;21:303–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in party by NIH grant #T32AR007612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory M. Swingen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eggen, M.D., Swingen, C.M. (2009). Cardiovascular Magnetic Resonance Imaging. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics