Skip to main content

Hematopoietic Stem Cells and Somatic Stem Cells

  • Chapter
  • First Online:
Hematopoietic Stem Cell Biology

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Stem cells are unspecialized cells that can differentiate to generate more specialized cell types responsible for tissue-specific function. During development, the differentiation of pluripotent embryonic stem cells leads to the production of specialized somatic cells that are ultimately responsible for the structure and function of all adult tissues and organs. “Naturally” pluripotent cells exist only at the earliest stages of embryonic development. However, less differentiated stem and progenitor cells are also present in adult tissues. In contrast to pluripotent embryonic stem cells, adult stem cells generally only form a limited number of cell types corresponding to their tissues of origin. These multipotent or unipotent adult stem cells exist in many, though probably not all, adult tissues including bone marrow (BM), brain, spinal cord, dental pulp, blood vessels, skeletal muscle, epithelia of the skin and digestive system, cornea, and retina. “Multipotent” stem cells can generate several types of cells within a given tissue (e.g., hematopoietic/blood forming stem cells), whereas “unipotent” stem cells give rise to only one differentiated cell type (e.g., skeletal muscle stem cells). Though adult stem cells exist at a very low frequency in adult tissues, they serve a critical function in maintaining tissue homeostasis and generating replacement cells to repair tissues after injury. Here, we review the current literature on adult stem cells and specifically highlight the regulation of multipotent hematopoietic stems cells in contrast with that of unipotent skeletal muscle stem cells, as well as discuss their respective roles in tissue homeostasis and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GB, Scadden DT (2008) A niche opportunity for stem cell therapeutics. Gene Ther 15:96–99

    PubMed  CAS  Google Scholar 

  • Alison MR, Sarraf CE (1994) Liver cell death: patterns and mechanisms. Gut 35:577–581

    PubMed  CAS  Google Scholar 

  • Alison MR, Poulsom R, Jeffery R, Anilkumar TV, Jagoe R, Sarraf CE (1993) Expression of hepatocyte growth factor mRNA during oval cell activation in the rat liver. J Pathol 171:291–299

    PubMed  CAS  Google Scholar 

  • Alison MR, Golding MH, Sarraf CE (1996) Pluripotential liver stem cells: facultative stem cells located in the biliary tree. Cell Prolif 29:373–402

    PubMed  CAS  Google Scholar 

  • Apte U, Zeng G, Thompson MD, Muller P, Micsenyi A, Cieply B, Kaestner KH, Monga SP (2007) Beta-catenin is critical for early postnatal liver growth. Am J Physiol Gastrointest Liver Physiol 292:G1578–G1585

    PubMed  CAS  Google Scholar 

  • Arai F, Suda T (2007) Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106:41–53

    PubMed  CAS  Google Scholar 

  • Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    PubMed  CAS  Google Scholar 

  • Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    PubMed  CAS  Google Scholar 

  • Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, Buckingham ME (2006) A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20:2450–2464

    PubMed  CAS  Google Scholar 

  • Barker N, Clevers H (2007) Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 133:1755–1760

    PubMed  CAS  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    PubMed  CAS  Google Scholar 

  • Bierkens JG, Hendry JH, Testa NG (1991) Recovery of the proliferative and functional integrity of mouse bone marrow in long-term cultures established after whole-body irradiation at different doses and dose rates. Exp Hematol 19:81–86

    PubMed  CAS  Google Scholar 

  • Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, Sharma A (2004) The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes 5(Suppl 2):16–22

    PubMed  Google Scholar 

  • Borycki AG, Li J, Jin F, Emerson CP, Epstein JA (1999) Pax3 functions in cell survival and in pax7 regulation. Development 126:1665–1674

    PubMed  CAS  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    PubMed  CAS  Google Scholar 

  • Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–59

    PubMed  CAS  Google Scholar 

  • Bradford GB, Williams B, Rossi R, Bertoncello I (1997) Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25:445–453

    PubMed  CAS  Google Scholar 

  • Braun KM, Sandgren EP (2000) Cellular origin of regenerating parenchyma in a mouse model of severe hepatic injury. Am J Pathol 157:561–569

    PubMed  CAS  Google Scholar 

  • Broxmeyer HE, Bruns HA, Zhang S, Cooper S, Hangoc G, McKenzie AN, Dent AL, Schindler U, Naeger LK, Hoey T, Kaplan MH (2002) Th1 cells regulate hematopoietic progenitor cell homeostasis by production of oncostatin M. Immunity 16:815–825

    PubMed  CAS  Google Scholar 

  • Byrne JA (2008) Generation of isogenic pluripotent stem cells. Hum Mol Genet 17:R37–R41

    PubMed  CAS  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    PubMed  CAS  Google Scholar 

  • Cantor AB, Orkin SH (2001) Hematopoietic development: a balancing act. Curr Opin Genet Dev 11:513–519

    PubMed  CAS  Google Scholar 

  • Cashman J, Dykstra B, Clark-Lewis I, Eaves A, Eaves C (2002) Changes in the proliferative activity of human hematopoietic stem cells in NOD/SCID mice and enhancement of their transplantability after in vivo treatment with cell cycle inhibitors. J Exp Med 196:1141–1149

    PubMed  CAS  Google Scholar 

  • Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ (2008) Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134:37–47

    PubMed  CAS  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5:e201

    PubMed  Google Scholar 

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT (2000a) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808

    PubMed  CAS  Google Scholar 

  • Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT (2000b) Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med 6:1235–1240

    PubMed  CAS  Google Scholar 

  • Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96:3120–3125

    PubMed  CAS  Google Scholar 

  • Cheung AM, Kwong YL, Liang R, Leung AY (2006) Stem cell model of hematopoiesis. Curr Stem Cell Res Ther 1:305–315

    PubMed  CAS  Google Scholar 

  • Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B Rev 14:53–60

    PubMed  CAS  Google Scholar 

  • Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2:E75

    PubMed  Google Scholar 

  • Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y (2005) Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci USA 102:14677–14682

    PubMed  CAS  Google Scholar 

  • Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH (2007) A single type of progenitor cell maintains normal epidermis. Nature 446:185–189

    PubMed  CAS  Google Scholar 

  • Cline MJ, Golde DW (1978) Immune suppression of hematopoiesis. Am J Med 64:301–310

    PubMed  CAS  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    PubMed  CAS  Google Scholar 

  • Conboy IM, Rando TA (2005) Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle 4:407–410

    PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    PubMed  CAS  Google Scholar 

  • Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337

    PubMed  CAS  Google Scholar 

  • Cumano A, Godin I (2001) Pluripotent hematopoietic stem cell development during embryogenesis. Curr Opin Immunol 13:166–171

    PubMed  CAS  Google Scholar 

  • Cumano A, Dieterlen-Lievre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907–916

    PubMed  CAS  Google Scholar 

  • Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201:1487–1502

    PubMed  CAS  Google Scholar 

  • Dansereau DA, Lasko P (2008) The development of germline stem cells in Drosophila. Methods Mol Biol 450:3–26

    PubMed  CAS  Google Scholar 

  • Dar A, Kollet O, Lapidot T (2006) Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 34:967–975

    PubMed  CAS  Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918

    PubMed  Google Scholar 

  • Dieterlen-Lievre F (1997) Intraembryonic hematopoietic stem cells. Hematol Oncol Clin North Am 11:1149–1171

    PubMed  CAS  Google Scholar 

  • Dieterlen-Lievre F, Godin I, Pardanaud L (1997) Where do hematopoietic stem cells come from? Int Arch Allergy Immunol 112:3–8

    PubMed  CAS  Google Scholar 

  • Dieterlen-Lievre F, Pardanaud L, Bollerot K, Jaffredo T (2002) Hemangioblasts and hemopoietic stem cells during ontogeny. C R Biol 325:1013–1020

    PubMed  Google Scholar 

  • Dixon R, Rosendaal M (1981) Contrasts between the response of the mouse haemopoietic system to 5-fluorouracil and irradiation. Blood Cells 7:575–587

    PubMed  CAS  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    PubMed  CAS  Google Scholar 

  • Donovan PJ, de Miguel MP (2003) Turning germ cells into stem cells. Curr Opin Genet Dev 13:463–471

    PubMed  CAS  Google Scholar 

  • Dor Y, Brown J, Martinez OI, Melton DA (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:41–46

    PubMed  CAS  Google Scholar 

  • Durr M, Muller AM (2003) Plasticity of somatic stem cells: dream or reality? Med Klin (Munich) 98(2):3–6

    Google Scholar 

  • Eaves CJ (2003) Manipulating hematopoietic stem cell amplification with Wnt. Nat Immunol 4:511–512

    PubMed  CAS  Google Scholar 

  • Eaves C, Glimm H, Eisterer W, Audet J, Maguer-Satta V, Piret J (2001) Characterization of human hematopoietic cells with short-lived in vivo repopulating activity. Ann N Y Acad Sci 938:63–70; discussion-1

    Google Scholar 

  • Eilertsen KJ, Floyd Z, Gimble JM (2008) The epigenetics of adult (somatic) stem cells. Crit Rev Eukaryot Gene Expr 18:189–206

    PubMed  CAS  Google Scholar 

  • Evarts RP, Nagy P, Marsden E, Thorgeirsson SS (1987) A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis 8:1737–1740

    PubMed  CAS  Google Scholar 

  • Evarts RP, Hu Z, Omori N, Omori M, Marsden ER, Thorgeirsson SS (1996) Precursor-product relationship between oval cells and hepatocytes: comparison between tritiated thymidine and bromodeoxyuridine as tracers. Carcinogenesis 17:2143–2151

    PubMed  CAS  Google Scholar 

  • Farber E (1956) Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3’-methyl-4-dimethylaminoazobenzene. Cancer Res 16:142–148

    PubMed  CAS  Google Scholar 

  • Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL (1993) Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol 122:897–902

    PubMed  CAS  Google Scholar 

  • Fried W, Barone SJ, Anagnostou A (1978) Effect of protein deprivation on hematopoietic stem cells and on peripheral blood counts. J Lab Clin Med 92:303–310

    PubMed  CAS  Google Scholar 

  • Fujio K, Evarts RP, Hu Z, Marsden ER, Thorgeirsson SS (1994) Expression of stem cell factor and its receptor, c-kit, during liver regeneration from putative stem cells in adult rat. Lab Invest 70:511–516

    PubMed  CAS  Google Scholar 

  • Garry DJ, Masino AM, Meeson AP, Martin CM (2003) Stem cell biology and therapeutic applications. Curr Opin Nephrol Hypertens 12:447–454

    PubMed  CAS  Google Scholar 

  • Gering M, Patient R (2008) Notch in the niche. Cell Stem Cell 2:293–294

    PubMed  CAS  Google Scholar 

  • Giampaolo A, Pelosi E, Valtieri M, Montesoro E, Sterpetti P, Samoggia P, Camagna A, Mastroberardino G, Gabbianelli M, Testa U et al (1995) HOXB gene expression and function in differentiating purified hematopoietic progenitors. Stem Cells 13(Suppl 1):90–105

    PubMed  CAS  Google Scholar 

  • Giebel B, Bruns I (2008) Self-renewal versus differentiation in hematopoietic stem and progenitor cells: a focus on asymmetric cell divisions. Curr Stem Cell Res Ther 3:9–16

    PubMed  CAS  Google Scholar 

  • Gkretsi V, Mars WM, Bowen WC, Barua L, Yang Y, Guo L, St-Arnaud R, Dedhar S, Wu C, Michalopoulos GK (2007) Loss of integrin linked kinase from mouse hepatocytes in vitro and in vivo results in apoptosis and hepatitis. Hepatology 45:1025–1034

    PubMed  CAS  Google Scholar 

  • Glimm H, Eaves CJ (1999) Direct evidence for multiple self-renewal divisions of human in vivo repopulating hematopoietic cells in short-term culture. Blood 94:2161–2168

    PubMed  CAS  Google Scholar 

  • Glimm H, Oh IH, Eaves CJ (2000) Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 96:4185–4193

    PubMed  CAS  Google Scholar 

  • Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ (2001) Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 107:199–206

    PubMed  CAS  Google Scholar 

  • Godin I, Dieterlen-Lievre F, Cumano A (1995) Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci USA 92:773–777

    PubMed  CAS  Google Scholar 

  • Godin I, Garcia-Porrero JA, Dieterlen-Lievre F, Cumano A (1999) Stem cell emergence and hemopoietic activity are incompatible in mouse intraembryonic sites. J Exp Med 190:43–52

    PubMed  CAS  Google Scholar 

  • Golding M, Sarraf CE, Lalani EN, Anilkumar TV, Edwards RJ, Nagy P, Thorgeirsson SS, Alison MR (1995) Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver. Hepatology 22:1243–1253

    PubMed  CAS  Google Scholar 

  • Gonczy P, DiNardo S (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122:2437–2447

    PubMed  CAS  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–958

    PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Helgason CD, Sauvageau G, Lawrence HJ, Largman C, Humphries RK (1996) Overexpression of HOXB4 enhances the hematopoietic potential of embryonic stem cells differentiated in vitro. Blood 87:2740–2749

    PubMed  CAS  Google Scholar 

  • Higgins CC (1931) Solitary Cysts of the Kidney. Ann Surg 93:868–879

    PubMed  CAS  Google Scholar 

  • Horwitz EM (2003) Stem cell plasticity: the growing potential of cellular therapy. Arch Med Res 34:600–606

    PubMed  CAS  Google Scholar 

  • Houssaint E (1981) Differentiation of the mouse hepatic primordium. II. Extrinsic origin of the haemopoietic cell line. Cell Differ 10:243–252

    PubMed  CAS  Google Scholar 

  • http://stemcells.nih.gov/info/basics (2008) Stem cell basics. In Stem cell information. National Institutes of Health, Bethesda

  • Huttmann A, Li CL, Duhrsen U (2003) Bone marrow-derived stem cells and “plasticity”. Ann Hematol 82:599–604

    PubMed  CAS  Google Scholar 

  • Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89:1502–1506

    PubMed  CAS  Google Scholar 

  • Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, Cotsarelis G (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11:1351–1354

    PubMed  CAS  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S, Arinobu Y, Geary K, Zhang P, Dayaram T, Fenyus ML, Elf S, Chan S, Kastner P, Huettner CS, Murray R, Tenen DG, Akashi K (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106:1590–1600

    PubMed  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wulf GG, Goodell MA (2002) Stem cells: A minireview. J Cell Biochem Suppl 38:1–6

    PubMed  Google Scholar 

  • Janes SM, Lowell S, Hutter C (2002) Epidermal stem cells. J Pathol 197:479–491

    PubMed  Google Scholar 

  • Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9:11–21

    PubMed  CAS  Google Scholar 

  • Joseph NM, Morrison SJ (2005) Toward an understanding of the physiological function of Mammalian stem cells. Dev Cell 9:173–183

    PubMed  CAS  Google Scholar 

  • Kastenberg ZJ, Odorico JS (2008) Alternative sources of pluripotency: science, ethics, and stem cells. Transplant Rev (Orlando) 22:215–222

    Google Scholar 

  • Kiel MJ, Morrison SJ (2006) Maintaining hematopoietic stem cells in the vascular niche. Immunity 25:862–864

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Morrison SJ (2008) Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 8:290–301

    PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    PubMed  CAS  Google Scholar 

  • Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242

    PubMed  CAS  Google Scholar 

  • Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    PubMed  CAS  Google Scholar 

  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491

    PubMed  CAS  Google Scholar 

  • Kronenberg HM (2007) PTH regulates the hematopoietic stem cell niche in bone. Adv Exp Med Biol 602:57–60

    PubMed  Google Scholar 

  • Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    PubMed  CAS  Google Scholar 

  • Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, Ansell J, Medvinsky A (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129:4891–4899

    PubMed  CAS  Google Scholar 

  • Lawrence HJ, Sauvageau G, Humphries RK, Largman C (1996) The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14:281–291

    PubMed  CAS  Google Scholar 

  • Leduc EH, Wilson JW (1958) Injury to liver cells in carbon tetrachloride poisoning; histochemical changes induced by carbon tetrachloride in mouse liver protected by sulfaguanidine. AMA Arch Pathol 65:147–157

    PubMed  CAS  Google Scholar 

  • Lemoli RM, Bertolini F, Cancedda R, De Luca M, Del Santo A, Ferrari G, Ferrari S, Martino G, Mavilio F, Tura S (2005) Stem cell plasticity: time for a reappraisal? Haematologica 90:360–381

    PubMed  CAS  Google Scholar 

  • Liu SV (2008) iPS cells: A more critical review. Stem Cells Dev 17:391–397

    PubMed  Google Scholar 

  • Liu CP, Auerbach R (1991) In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. Development 113:1315–1323

    PubMed  CAS  Google Scholar 

  • Liu A, Zhu P, Li X, Zhang L, Chi F, Wu Z, Song Y, Zhang Y (1994) Ultrastructural study of the hemopoietic microenvironment in human fetal spleen. Chin Med Sci J 9:157–161

    PubMed  CAS  Google Scholar 

  • Lux CT, Yoshimoto M, McGrath K, Conway SJ, Palis J, Yoder MC (2008) All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111:3435–3438

    PubMed  CAS  Google Scholar 

  • Malumbres M, Sotillo R, Santamaria D, Galan J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504

    PubMed  CAS  Google Scholar 

  • Martinez-Agosto JA, Mikkola HK, Hartenstein V, Banerjee U (2007) The hematopoietic stem cell and its niche: a comparative view. Genes Dev 21:3044–3060

    PubMed  CAS  Google Scholar 

  • Masson NM, Currie IS, Terrace JD, Garden OJ, Parks RW, Ross JA (2006) Hepatic progenitor cells in human fetal liver express the oval cell marker Thy-1. Am J Physiol Gastrointest Liver Physiol 291:G45–G54

    PubMed  CAS  Google Scholar 

  • Matsusaka S, Toyosaka A, Nakasho K, Tsujimura T, Sugihara A, Takanashi T, Uematsu K, Terada N, Okamoto E (2000) The role of oval cells in rat hepatocyte transplantation. Transplantation 70:441–446

    PubMed  CAS  Google Scholar 

  • Mayack SR, Wagers AJ (2008) Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood 112:519–531

    PubMed  CAS  Google Scholar 

  • McCartney BM, Peifer M (2003) Stem cells in the news: CNN and APC make headlines. Dev Cell 5:532–534

    PubMed  CAS  Google Scholar 

  • Medvinsky A, Dzierzak E (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906

    PubMed  CAS  Google Scholar 

  • Merida I, Avila-Flores A, Merino E (2008) Diacylglycerol kinases: at the hub of cell signalling. Biochem J 409:1–18

    PubMed  CAS  Google Scholar 

  • Micsenyi A, Tan X, Sneddon T, Luo JH, Michalopoulos GK, Monga SP (2004) Beta-catenin is temporally regulated during normal liver development. Gastroenterology 126:1134–1146

    PubMed  CAS  Google Scholar 

  • Mikkola HK, Gekas C, Orkin SH, Dieterlen-Lievre F (2005) Placenta as a site for hematopoietic stem cell development. Exp Hematol 33:1048–1054

    PubMed  CAS  Google Scholar 

  • Miller JB, Emerson CP, Jr (2003) Does the road to muscle rejuvenation go through Notch? Sci Aging Knowledge Environ 2003:pe34

    Google Scholar 

  • Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783

    PubMed  CAS  Google Scholar 

  • Monga SP, Pediaditakis P, Mule K, Stolz DB, Michalopoulos GK (2001) Changes in WNT/beta-catenin pathway during regulated growth in rat liver regeneration. Hepatology 33:1098–1109

    PubMed  CAS  Google Scholar 

  • Moore KA, Lemischka IR (2004) “Tie-ing” down the hematopoietic niche. Cell 118:139–140

    PubMed  CAS  Google Scholar 

  • Morgan JE, Hoffman EP, Partridge TA (1990) Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse. J Cell Biol 111:2437–2449

    PubMed  CAS  Google Scholar 

  • Morrison SJ, Wright DE, Weissman IL (1997) Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci USA 94:1908–1913

    PubMed  CAS  Google Scholar 

  • Nagy P, Bisgaard HC, Thorgeirsson SS (1994) Expression of hepatic transcription factors during liver development and oval cell differentiation. J Cell Biol 126:223–233

    PubMed  CAS  Google Scholar 

  • Nagy P, Kiss A, Schnur J, Thorgeirsson SS (1998) Dexamethasone inhibits the proliferation of hepatocytes and oval cells but not bile duct cells in rat liver. Hepatology 28:423–429

    PubMed  CAS  Google Scholar 

  • Naveiras O, Daley GQ (2006) Stem cells and their niche: a matter of fate. Cell Mol Life Sci 63:760–766

    PubMed  CAS  Google Scholar 

  • Neben S, Marcus K, Mauch P (1993) Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor. Blood 81:1960–1967

    PubMed  CAS  Google Scholar 

  • Niemann C, Watt FM (2002) Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol 12:185–192

    PubMed  CAS  Google Scholar 

  • O’Shaughnessy RF, Christiano AM (2001) Stem cells in the epidermis. Skin Pharmacol Appl Skin Physiol 14:350–357

    PubMed  Google Scholar 

  • Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    PubMed  CAS  Google Scholar 

  • Omori N, Evarts RP, Omori M, Hu Z, Marsden ER, Thorgeirsson SS (1996) Expression of leukemia inhibitory factor and its receptor during liver regeneration in the adult rat. Lab Invest 75:15–24

    PubMed  CAS  Google Scholar 

  • Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644

    PubMed  CAS  Google Scholar 

  • Paku S, Schnur J, Nagy P, Thorgeirsson SS (2001) Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol 158:1313–1323

    PubMed  CAS  Google Scholar 

  • Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5084

    PubMed  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    PubMed  CAS  Google Scholar 

  • Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202:1599–1611

    PubMed  CAS  Google Scholar 

  • Petersen BE, Zajac VF, Michalopoulos GK (1998a) Hepatic oval cell activation in response to injury following chemically induced periportal or pericentral damage in rats. Hepatology 27:1030–1038

    PubMed  CAS  Google Scholar 

  • Petersen BE, Goff JP, Greenberger JS, Michalopoulos GK (1998b) Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. Hepatology 27:433–445

    PubMed  CAS  Google Scholar 

  • Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902

    PubMed  Google Scholar 

  • Porter RL, Calvi LM (2008) Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 473:193–200

    PubMed  CAS  Google Scholar 

  • Rabes HM (1977) Kinetics of hepatocellular proliferation as a function of the microvascular structure and functional state of the liver. Ciba Found Symp 55:31–53

    Google Scholar 

  • Rabes HM, Wirsching R, Tuczek HV, Iseler G (1976) Analysis of cell cycle compartments of hepatocytes after partial hepatecomy. Cell Tissue Kinet 9:517–532

    PubMed  CAS  Google Scholar 

  • Ralston A, Rossant J (2005) Genetic regulation of stem cell origins in the mouse embryo. Clin Genet 68:106–112

    PubMed  CAS  Google Scholar 

  • Rattis FM, Voermans C, Reya T (2004) Wnt signaling in the stem cell niche. Curr Opin Hematol 11:88–94

    PubMed  CAS  Google Scholar 

  • Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133:2455–2465

    PubMed  CAS  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953

    PubMed  CAS  Google Scholar 

  • Reynolds AJ, Jahoda CA (1991) Hair follicle stem cells? A distinct germinative epidermal cell population is activated in vitro by the presence of hair dermal papilla cells. J Cell Sci 99(Pt 2):373–385

    PubMed  Google Scholar 

  • Rheinwald JG, Green H (1975a) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1975b) Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell 6:317–330

    PubMed  CAS  Google Scholar 

  • Robertson S, Kennedy M, Keller G (1999) Hematopoietic commitment during embryogenesis. Ann N Y Acad Sci 872:9–15; discussion-6

    Google Scholar 

  • Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314:1937–1944

    PubMed  CAS  Google Scholar 

  • Rosendaal M, Dixon R, Panayi M (1981) Haemopoietic stem cells: possibility of toxic effects of 5-fluorouracil on spleen colony formation. Blood Cells 7:561–574

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Weissman IL (2007a) Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42:385–390

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL (2007b) Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 6:2371–2376

    PubMed  CAS  Google Scholar 

  • Rovo A, Gratwohl A (2008) Plasticity after allogeneic hematopoietic stem cell transplantation. Biol Chem 389:825–836

    PubMed  CAS  Google Scholar 

  • Rowden G, Lewis MG, Sheikh KM, Summerlin WT (1975) Long-term organ culture of human skin: an ultrastructural and immunochemical study. J Pathol 117:139–149

    PubMed  CAS  Google Scholar 

  • Saini A, Stewart CE (2006) Adult stem cells: the therapeutic potential of skeletal muscle. Curr Stem Cell Res Ther 1:157–171

    PubMed  CAS  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    PubMed  CAS  Google Scholar 

  • Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579

    PubMed  CAS  Google Scholar 

  • Sarraf C, Lalani EN, Golding M, Anilkumar TV, Poulsom R, Alison M (1994) Cell behavior in the acetylaminofluorene-treated regenerating rat liver. Light and electron microscopic observations. Am J Pathol 145:1114–1126

    PubMed  CAS  Google Scholar 

  • Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM, Humphries RK (1995) Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 9:1753–1765

    PubMed  CAS  Google Scholar 

  • Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25

    PubMed  CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    PubMed  CAS  Google Scholar 

  • Seale P, Asakura A, Rudnicki MA (2001) The potential of muscle stem cells. Dev Cell 1:333–342

    PubMed  CAS  Google Scholar 

  • Sell S (1994) Liver stem cells. Mod Pathol 7:105–112

    PubMed  CAS  Google Scholar 

  • Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ, Wu EA, Horner JW, DePinho RA (2001) Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413:86–91

    PubMed  CAS  Google Scholar 

  • Sirica AE, Mathis GA, Sano N, Elmore LW (1990) Isolation, culture, and transplantation of intrahepatic biliary epithelial cells and oval cells. Pathobiology 58:44–64

    PubMed  CAS  Google Scholar 

  • Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5:21–30

    PubMed  CAS  Google Scholar 

  • Steinman RA (2002) Cell cycle regulators and hematopoiesis. Oncogene 21:3403–3413

    PubMed  CAS  Google Scholar 

  • Sylvester KG, Longaker MT (2004) Stem cells: review and update. Arch Surg 139:93–99

    PubMed  Google Scholar 

  • Takada S, Kelkar A, Theurkauf WE (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113:87–99

    PubMed  CAS  Google Scholar 

  • Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK (1997) Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol 17:495–505

    PubMed  CAS  Google Scholar 

  • Tiedemann H, Asashima M, Grunz H, Knochel W (2001) Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis. Dev Growth Differ 43:469–502

    PubMed  CAS  Google Scholar 

  • Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549

    PubMed  CAS  Google Scholar 

  • Vats A, Bielby RC, Tolley NS, Nerem R, Polak JM (2005) Stem cells. Lancet 366:592–602

    PubMed  CAS  Google Scholar 

  • Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2:e301

    PubMed  Google Scholar 

  • Voermans C, van Hennik PB, van der Schoot CE (2001) Homing of human hematopoietic stem and progenitor cells: new insights, new challenges? J Hematother Stem Cell Res 10:725–738

    PubMed  CAS  Google Scholar 

  • Wagers AJ (2008) Wnt not, waste not. Cell Stem Cell 2:6–7

    PubMed  CAS  Google Scholar 

  • Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    PubMed  CAS  Google Scholar 

  • Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129:1081–1095

    PubMed  CAS  Google Scholar 

  • Wallenfang MR, Matunis E (2003) Developmental biology. Orienting stem cells. Science 301:1490–1491

    PubMed  CAS  Google Scholar 

  • Waller EK, Olweus J, Lund-Johansen F, Huang S, Nguyen M, Guo GR, Terstappen L (1995a) The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood 85:2422–2435

    PubMed  CAS  Google Scholar 

  • Waller EK, Huang S, Terstappen L (1995b) Changes in the growth properties of CD34+, CD38– bone marrow progenitors during human fetal development. Blood 86:710–718

    PubMed  CAS  Google Scholar 

  • Warren LA, Rossi DJ (2009) Stem cells and aging in the hematopoietic system. Mech Ageing Dev 130:46–53

    Google Scholar 

  • Watt FM (2002) The stem cell compartment in human interfollicular epidermis. J Dermatol Sci 28:173–180

    PubMed  CAS  Google Scholar 

  • Watt SM, Forde SP (2008) The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang 94:18–32

    PubMed  CAS  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    PubMed  CAS  Google Scholar 

  • Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    PubMed  CAS  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    PubMed  CAS  Google Scholar 

  • Wright DE, Cheshier SH, Wagers AJ, Randall TD, Christensen JL, Weissman IL (2001) Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood 97:2278–2285

    PubMed  CAS  Google Scholar 

  • Yamashita YM, Fuller MT (2005) Asymmetric stem cell division and function of the niche in the Drosophila male germ line. Int J Hematol 82:377–380

    PubMed  CAS  Google Scholar 

  • Yasui O, Miura N, Terada K, Kawarada Y, Koyama K, Sugiyama T (1997) Isolation of oval cells from Long-Evans Cinnamon rats and their transformation into hepatocytes in vivo in the rat liver. Hepatology 25:329–334

    PubMed  CAS  Google Scholar 

  • Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924–930

    PubMed  CAS  Google Scholar 

  • Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116:1195–1201

    PubMed  CAS  Google Scholar 

  • Yoder MC, Hiatt K, Dutt P, Mukherjee P, Bodine DM, Orlic D (1997a) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7:335–344

    PubMed  CAS  Google Scholar 

  • Yoder MC, Hiatt K, Mukherjee P (1997b) In vivo repopulating hematopoietic stem cells are present in the murine yolk sac at day 9.0 postcoitus. Proc Natl Acad Sci USA 94:6776–6780

    PubMed  CAS  Google Scholar 

  • Yu H, Yuan Y, Shen H, Cheng T (2006) Hematopoietic stem cell exhaustion impacted by p18 INK4C and p21 Cip1/Waf1 in opposite manners. Blood 107:1200–1206

    PubMed  CAS  Google Scholar 

  • Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T (2004) In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 6:436–442

    PubMed  CAS  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006a) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    PubMed  CAS  Google Scholar 

  • Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006b) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    PubMed  CAS  Google Scholar 

  • Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ (1997) Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–158

    PubMed  CAS  Google Scholar 

  • Zindy F, van Deursen J, Grosveld G, Sherr CJ, Roussel MF (2000) INK4d-deficient mice are fertile despite testicular atrophy. Mol Cell Biol 20:372–378

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Stem Cell

An unspecialized cell capable of generating more specialized cell types with specialized functions. All stem cells have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.

Embryonic Stem Cell

An unspecialized cell that is derived from the inner cell mass of the blastocyst contained within the embryo. These cells are pluripotent and thus can develop into specialized cells that contribute to all of the mature tissues of an organism.

Somatic Stem Cell

An unspecialized cell found among differentiated cells in a tissue or organ that can renew and differentiate to yield the major specialized cell types of the tissue or organ. Adult stem cells are multipotent or unipotent, and the primary role of adult stem cells is to maintain and repair the tissue in which they are found. The term “somatic stem cell” is often used interchangeably with adult stem cell.

Germ Line Cell

Germ cells are responsible for the production of sex cells or gametes (ovum and spermatozoa) constituting a cell line through which genes are passed from generation to generation.

Somatic Cell

Any cell (other than a germ cell) that contributes to the formation of the body, becoming differentiated into the various tissues and organs that comprise the mature organism.

Adult Stem Cell

See Somatic Stem Cell.

Unipotent Stem Cell

An unspecialized cell capable of developing into only one type of cell within a given tissue or organ.

Multipotent Stem Cell

An unspecialized cell capable of developing into multiple specialized cells of a given tissue or organ. For example, multipotent blood stem cells give rise to the red cells, white cells, and platelets in the blood.

Pluripotent Stem Cell

An unspecialized cell that is capable of developing into all of the differentiated cells of an organism.

Facultative Stem Cell

An unspecialized cell that is capable of contributing to tissue repair and regeneration when normal tissue repair cells and mechanisms are blocked, often due to injury or disease.

Hematopoietic Stem Cell

An unspecialized cell that can differentiate into all of the specialized cells of the blood including red blood cells, white blood cells, and platelets.

Progenitor Cell

A cell in a transition state from an unspecialized cell to a fully differentiated mature cell with a specialized function; therefore, it is a more specialized cell than the stem cell that generated it but a less specialized cell than the cell that is the direct ancestor of it in a hierarchical cell lineage.

Stem Cell Niche

The microenvironment in which stem cells are found, which interacts with stem cells to regulate stem cell function and fate. Several factors are important to regulate stem cell characteristics within the niche: cell-cell interactions, interactions between stem cells and adhesion molecules, extracellular matrix components, and soluble factors.

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tan, K.Y., Kim, F.S., Wagers, A.J., Mayack, S.R. (2010). Hematopoietic Stem Cells and Somatic Stem Cells. In: Kondo, M. (eds) Hematopoietic Stem Cell Biology. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-347-3_3

Download citation

Publish with us

Policies and ethics