Skip to main content

Dopamine Receptor Subtype-Selective Drugs: D2-Like Receptors

  • Chapter
  • First Online:
  • 2682 Accesses

Part of the book series: The Receptors ((REC))

Abstract

Drugs that are known to activate or block dopamine receptors are widely used for the treatment of a number of severe diseases. In most cases, dopaminergic drugs preferentially interact with the subtypes of the D2 family (D2, D3, D4). However, only minor selectivity has been observed between D2, D3, and D4. Nevertheless, in recent years D3 and D4 subtype-selective agonists, partial agonists, and antagonist have been developed. The most interesting structural features required for high selectivity and affinity are presented as well as structure–activity relationship (SAR) studies. Moreover, the use of subtype-selective radioligands is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boeckler F. Competition for the “gold standard” L-Dopa? Receptor mediated Parkinson’s therapy. Pharm Unserer Zeit 2006;35:204–16.

    Article  CAS  Google Scholar 

  2. Merlino G, Serafini A, Robiony F, Valente M, Gigli GL. Clinical experience with pramipexole in the treatment of restless legs syndrome. Expert Opin Drug Metab Toxicol 2008;4:225–35.

    Article  PubMed  CAS  Google Scholar 

  3. De Oliveira IR, Juruena MF. Treatment of psycosis: 30 years of progress. J Clin Pharm Ther 2006;31:523–34.

    Article  PubMed  Google Scholar 

  4. Grady MA, Gasperoni TL, Kirkpatrick P. Aripiprazole. Nat Rev Drug Discov 2003;2:427–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lawler CP, Piroleau C, Lewis MM, et al. Interactions of the novel anitpsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 1999;20:612–27.

    Article  PubMed  CAS  Google Scholar 

  6. Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel anitpsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002;302:381–9.

    Article  PubMed  CAS  Google Scholar 

  7. Laruelle M, Frankle WG, Narendran R, Kegeles LS, Abi-Dargham A. Mechanism of action of antipsychotic drugs: from dopamine D2 receptor antagonism to glutamate NMDA facilitation. Clin Ther 2005;27(Suppl A):S16–24.

    Article  PubMed  CAS  Google Scholar 

  8. Steiner G, Bach A, Bialojan S, et al. D4/5-HT2A Receptor antagonists: LU-111995 and other potential new antipsychotics in development. Drugs Future 1998;23:191–204.

    Article  CAS  Google Scholar 

  9. Sokoloff P, Andrieux M, Besancon R, et al. Pharmacology of human dopamine D3 receptor expressed in a mammalian cell line: comparison with D2 receptor. Eur J Pharmacol 1992;225:331–7.

    Article  PubMed  CAS  Google Scholar 

  10. Boeckler F, Gmeiner P. The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects. Pharmacol Ther 2006;112:281–333.

    Article  PubMed  CAS  Google Scholar 

  11. Boeckler F, Lanig H, Gmeiner P. Modeling the similarity and divergence of dopamine D2-like receptors and identification of validated ligand-receptor complexes. J Med Chem 2005;48:694–709.

    Article  PubMed  CAS  Google Scholar 

  12. Cannon JG. Structure-activity relationships of dopamine agonists. Annu Rev Pharmacol Toxicol 1983;23:103–30.

    Article  PubMed  CAS  Google Scholar 

  13. McDermed JD, McKenzie GM, Phillips AP. Synthesis and pharmacology of some 2-aminotetralins. Dopamine receptor agonists. J Med Chem 1975;18:362–7.

    Article  PubMed  CAS  Google Scholar 

  14. Cannon JG, Lee T, Goldman HD, Costall B, Naylor RJ. Cerebral dopamine agonist properties of some 2-aminotetralin derivatives after peripheral and intracerebral administration. J Med Chem 1977;20:1111–6.

    Article  PubMed  CAS  Google Scholar 

  15. Malmberg A, Nordvall G, Johansson AM, Mohell N, Hacksell U. Molecular basis for the binding of 2-aminotetralins to human dopamine D2A and D3 receptors. Mol Pharmacol 1994;46:299–312.

    PubMed  CAS  Google Scholar 

  16. van Vliet LA, Tepper PG, Dijkstra D, et al. Affinity for dopamine D2, D3, and D4 receptors of 2-aminotetralins. Relevance of D2 agonist binding for determination of receptor subtype selectivity. J Med Chem 1996;39:4233–7.

    Article  PubMed  Google Scholar 

  17. Karlsson A, Björk L, Pettersson C, Andén N-E, Hacksell U. (R)- and (S)-5-Hydroxy-2-(dipropylamino)tetralin (5-OH DPAT): Assessment of optical purities and dopaminergic activities. Chirality 1990;2:90–5.

    Article  PubMed  CAS  Google Scholar 

  18. Yu H, Liu Y, Malmberg A, Mohell N, Hacksell U, Lewander T. Differential serotoninergic and dopaminergic activities of the (R)- and the (S)-enantiomeres of 2-(di-n-propylamino)tetralin. Eur J Pharmacol 1996;303:151–62.

    Article  PubMed  CAS  Google Scholar 

  19. Chumpradit S, Kung M-P, Kung HF. Synthesis and optical resolution of (R)- and (S)-trans-7-Hydroxy-2-[N-propyl-N-(3'-iodo-2'-propenyl)amino]tetralin: a new D3 dopamine receptor ligand. J Med Chem 1993;36:4308–12.

    Article  PubMed  CAS  Google Scholar 

  20. Chumpradit S, Kung M-P, Vessotskie J, Foulon C, Mu M, Kung HF. Iodinated 2-aminotetralins and 3-amino-1-benzopyrans: ligands for dopamine D2 and D3 receptors. J Med Chem 1994;37:4245–50.

    Article  PubMed  CAS  Google Scholar 

  21. Cusack NJ, Peck JV. N-0923. Dopamine D2 agonist. Drugs Future 1993;18:1005–8.

    Google Scholar 

  22. Reynolds NA, Wellington K, Easthope SE. Rotigotine in Parkinson’s disease. CNS Drugs 2005;19:973–81.

    Article  PubMed  CAS  Google Scholar 

  23. Glase SA, Corbin AE, Pugsley TA, Heffner TG, Wise LD. Synthesis and dopaminergic activity of pyridine analogs of 5-hydroxy-2-(di-n-propylamino)tetralin. J Med Chem 1995;38:3132–7.

    Article  PubMed  CAS  Google Scholar 

  24. Sokoloff P, Giros B, Martres M-P, Bouthenet M-L, Schwartz J-C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 1990;347:146–51.

    Article  PubMed  CAS  Google Scholar 

  25. Tang L, Todd RD, Heller A, O‘Malley KL. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast an dopaminergic cell lines. J Pharmacol Exp Ther 1994;268:495–502.

    PubMed  CAS  Google Scholar 

  26. Kreiss DS, Bergstrom DA, Gonzales AM, Huang K-X, Sibley DR, Walters JR. Dopaminergic receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur J Pharm 1995;277:209–14.

    Article  CAS  Google Scholar 

  27. Burris KD, Pacheco MA, Filtz TM, Kung M-P, Kung HF, Molinoff PB. Lack of discrimination by agents for D2 and D3 dopamine receptors. Neuropsychopharmacology 1995;12:335–45.

    Article  PubMed  CAS  Google Scholar 

  28. Millan MJ, Peglion J-L, Vian J, et al. Functional correlates of dopamine D3 receptor activation in the rat in vivo and their modulation by selective antagonist, (+)-S 14297: I. Activation of postsynaptic D3 receptors mediates hypothermia, whereas blockade of D2 receptors elicits prolactin secretion and catalepsy. J Pharmacol Exp Ther 1995;275:885–98.

    PubMed  CAS  Google Scholar 

  29. Levant B. The D3 dopamine receptor: Neurobiology and potential clinical relevance. Pharmacol Rev 1997;49:231–52.

    PubMed  CAS  Google Scholar 

  30. Mierau J, Schneider FJ, Ensinger HA, Chio CL, Lajiness ME, Huff RM. Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur J Pharmacol; Molecular Pharmacology Section 1995;290:29–36.

    Article  PubMed  CAS  Google Scholar 

  31. Perachon S, Schwartz J-C, Sokoloff P. Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors. Eur J Pharmacol 1999;366:293–300.

    Article  PubMed  CAS  Google Scholar 

  32. Mierau J, Schingnitz G. Biochemical and pharmacological studies on pramipexole, a potent and selective dopamine D2 receptor agonist. Eur J Pharmacol 1992;215:161–70.

    Article  PubMed  CAS  Google Scholar 

  33. Schneider CS, Mierau J. Dopamine autoreceptor agonists: Resolution and pharmacological activity of 2,6-diaminotetrahydrobenzothiazole and an aminothiazole analogue of apomorphine. J Med Chem 1987;30:494–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lehmann T, Hübner H, Gmeiner P. Dopaminergic 7-aminotetrahydroindolizines: Ex-chiral pool synthesis and preferential D3 receptor binding. Bioorg Med Chem Lett 2001;11:2863–6.

    Article  PubMed  CAS  Google Scholar 

  35. Löber S, Hübner H, Gmeiner P. Fused azaindole derivatives: Molecular design, synthesis and in vitro pharmacology leading to the preferential dopamine D3 receptor agonist FAUC 725. Bioorg Med Chem Lett 2002;12:2377–80.

    Article  PubMed  Google Scholar 

  36. Elsner J, Boeckler F, Heinemann FW, Hübner H, Gmeiner P. Pharmacophore-guided drug discovery investigations leading to bioactive 5-aminotetrahydropyrazolopyridines. Implications for the binding mode of heterocyclic dopamine D3 receptor agonists. J Med Chem 2005;48:5771–9.

    Article  PubMed  CAS  Google Scholar 

  37. Bergauer M, Hübner H, Gmeiner P. Practical ex-chiral-pool methodology for the synthesis of dopaminergic tetrahydroindoles. Tetrahedron 2004;60:1197–204.

    Article  CAS  Google Scholar 

  38. Dijkstra D, Rodenhuis N, Vermeulen ES, Pugsley TA, Wise LD, Wikström HV. Further characterization of structural requirements for ligands at the dopamine D2 and D3 receptor: exploring the thiophene moiety. J Med Chem 2002;45:3022–31.

    Article  PubMed  CAS  Google Scholar 

  39. Rodenhuis N, Timmerman W, Wikström HV, Dijkstra D. Thiophene analogs of naphthoxazines and 2-aminotetralins: bioisosteres with improved relative oral bioavailability, as compared to 5-OH-DPAT. Eur J Pharmacol 2000;394:255–63.

    Article  PubMed  CAS  Google Scholar 

  40. Hübner H, Haubmann C, Utz W, Gmeiner P. Conjugated enynes as nonaromatic catechol bioisosteres: Synthesis, binding experiments, and computational studies of novel dopamine receptor agonists recognizing preferentially the D3 subtype. J Med Chem 2000;43:756–62.

    Article  PubMed  CAS  Google Scholar 

  41. Lenz C, Boeckler F, Hübner H, Gmeiner P. Analogues of FAUC 73 revealing new insights into the structural requirements of nonaromatic dopamine D3 receptor agonists. Bioorg Med Chem 2004;12:113–7.

    Article  PubMed  CAS  Google Scholar 

  42. Lenz C, Haubmann C, Hübner H, Boeckler F, Gmeiner P. Fancy bioisosteres: synthesis and dopaminergic properties of the endiyne FAUC 88 as a novel non-aromatic D3 agonist. Bioorg Med Chem 2005;13:185–91.

    Article  PubMed  CAS  Google Scholar 

  43. Lenz C, Boeckler F, Hübner H, Gmeiner P. Fancy bioisosteres: Synthesis, SAR, and pharmacological investigations of novel nonaromatic dopamine D3 receptor ligands. Bioorg Med Chem 2005;13:4434–42.

    Article  PubMed  CAS  Google Scholar 

  44. Haadsma-Svensson SR, Cleek KA, Dinh DM, et al. Dopamine D3 receptor antagonists. 1. Synthesis and structure-activity relationships of 5,6-dimethoxy-N-alkylaryl-substituted 2-aminoindanes. J Med Chem 2001;44:4716–32.

    Article  PubMed  CAS  Google Scholar 

  45. Waters N, Svensson K, Haadsma-Svensson SR, Smith MW, Carlsson A. The dopamine D3 receptor: A postsynaptic receptor inhibitory on rat locomotor activity. J Neural Transmission 1993;94:11–9.

    Article  CAS  Google Scholar 

  46. Boyfield I, Coldwell MC, Hadley MS, et al. A novel series of 2-aminoteralins with high affinity and selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 1997;7:1995–8.

    Article  CAS  Google Scholar 

  47. Avenell KY, Boyfield I, Hadley MS, et al. Heterocyclic analogues of 2-aminotetralins with high affinity and selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 1999;9:2715–20.

    Article  PubMed  CAS  Google Scholar 

  48. Mach UR, Hackling AE, Perachon S, et al. Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. ChemBioChem 2004;5:508–18.

    Article  PubMed  CAS  Google Scholar 

  49. Austin NE, Avenell KY, Boyfield I, et al. Novel 1,2,3,4-tetrahydroisoquinolines with high affinity and selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 1999;9:179–84.

    Article  PubMed  CAS  Google Scholar 

  50. Avenell KY, Boyfield I, Coldwell MC, et al. Fused aminotetralins: novel antagonists with high selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 1998;8:2859–64.

    Article  PubMed  CAS  Google Scholar 

  51. Dubuffet T, Newman-Tancredi A, Cussac D, et al. Novel benzopyrano[3,4-c]pyrrole derivatives as potent and selective dopamine D3 receptor antagonists. Bioorg Med Chem Lett 1999;9:2059–64.

    Article  PubMed  CAS  Google Scholar 

  52. Austin NE, Avenell KY, Boyfield I, et al. Novel 2,3,4,5-tetrahydro-1H-3-benzazepines with high affinity and selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 2000;10:2553–5.

    Article  PubMed  CAS  Google Scholar 

  53. Austin NE, Avenell KY, Boyfield I, et al. Design and synthesis of novel 2,3-dihydro-1H-isoindoles with high affinity and selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 2001;11:685–8.

    Article  PubMed  CAS  Google Scholar 

  54. Macdonald GJ, Branch CL, Hadley MS, et al. Design and synthesis of trans-3-(2-(4-((3-(3-(5-methyl-1,2,4-oxadiazolyl))-phenyl)carboxamido)cyclohexyl)ethyl)-7-methylsulfonyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SB-414796): a potent and selective dopamine D3 receptor antagonist. J Med Chem 2003;46:4952–64.

    Article  PubMed  CAS  Google Scholar 

  55. Stemp G, Ashmeade T, Branch CL, et al. Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D3 receptor antagonist with high oral bioavailability and CNS penetration in the rat. J Med Chem 2000;43:1878–85.

    Article  PubMed  CAS  Google Scholar 

  56. Sautel F, Griffon N, Sokoloff P, et al. Nafadotride, a potent preferential dopamine D3 receptor antagonist, activates locomotion in rodents. J Pharmacol Exp Ther 1995;275:1239–46.

    PubMed  CAS  Google Scholar 

  57. Huang Y, Luedtke RR, Freeman RA, Wu L, Mach RH. Synthesis and structure-activity relationships of naphthamides as dopamine D3 receptor ligands. J Med Chem 2001;44:1815–26.

    Article  PubMed  CAS  Google Scholar 

  58. Bolton D, Boyfield I, Coldwell MC, et al. Novel 2,5-disubstituted-1 H-pyrroles with high affinity for the dopamine D3 receptor. Bioorg Med Chem Lett 1996;6:1233–6.

    Article  CAS  Google Scholar 

  59. Einsiedel J, Thomas C, Hübner H, Gmeiner P. Phenyloxazoles and phenylthiazoles as benzamide bioisosteres: synthesis and dopamine receptor binding profiles. Bioorg Med Chem Lett 2000;10:2041–4.

    Article  PubMed  CAS  Google Scholar 

  60. Huang Y, Luedtke RR, Freeman RA, Wu L, Mach RH. Synthesis of 2-(2,3-dimethoxyphenyl)-4-(aminomethyl)imidazole analogues and their binding affinities for dopamine D2 and D3 receptors. Bioorg Med Chem 2001;9:3113–22.

    Article  PubMed  CAS  Google Scholar 

  61. Mach RH, Huang Y, Freeman RA, Wu L, Blair S, Luedtke RR. Synthesis of 2-(5-bromo-2,3-dimethoxyphenyl)-5-(aminomethyl)-1H-pyrrole analogues and their binding affinities for dopamine D2, D3, and D4 receptors. Bioorg Med Chem 2003;11:225–33.

    Article  PubMed  CAS  Google Scholar 

  62. Glase SA, Akunne HC, Heffner TG, et al. 4-Bromo-1-methoxy-N-[2-(4-Aryl-1-piperazinyl)ethyl]-2-naphthalencarboxamides: Selective dopamine D3 receptor partial agonists. Bioorg Med Chem Lett 1996;6:1361–6.

    Article  CAS  Google Scholar 

  63. Robarge MJ, Husbands SM, Kieltyka A, Brodbeck R, Thurkauf A, Newman AH. Design and synthesis of [(2,3-dichlorophenyl)piperazin-1-yl]alkylfluorenylcarboxamides as novel ligands selective for the dopamine D3 receptor subtype. J Med Chem 2001;44:3175–86.

    Article  PubMed  CAS  Google Scholar 

  64. Bettinetti L, Schlotter K, Hübner H, Gmeiner P. Interactive SAR studies: Rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists. J Med Chem 2002;45:4594–7.

    Article  PubMed  CAS  Google Scholar 

  65. Hocke C, Prante O, Löber S, Hübner H, Gmeiner P, Kuwert T. Synthesis and evaluation of 18F-labeled dopamine D3 receptor ligands as potential PET imaging agents. Bioorg Med Chem Lett 2005;15:4819–23.

    Article  PubMed  CAS  Google Scholar 

  66. Schlotter K, Boeckler F, Hübner H, Gmeiner P. Fancy bioisosteres: Metallocene-derived G-protein-coupled receptor ligands with subnanomolar binding affinity and novel selectivity Profiles. J Med Chem 2005;48:3696–9.

    Article  PubMed  CAS  Google Scholar 

  67. Schlotter K, Boeckler F, Hübner H, Gmeiner P. Fancy bioisosteres: novel paracyclophane derivatives as super-affinity dopamine D3 receptor antagonists. J Med Chem 2006;49:3628–35.

    Article  PubMed  CAS  Google Scholar 

  68. Leopoldo M, Berardi F, Colabufo NA, et al. Structure-affinity relationship study on N-[4-(4-arylpiperazin-1-yl)butyl]arylcarboxamides as potent and selective dopamine D3 receptor ligands. J Med Chem 2002;45:5727–35.

    Article  PubMed  CAS  Google Scholar 

  69. Geneste H, Backfisch G, Braje W, et al. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: 1 H-Pyrimidin-2-one derivatives. Bioorg Med Chem Lett 2006;16:490–4.

    Article  PubMed  CAS  Google Scholar 

  70. Geneste H, Backfisch G, Braje W, et al. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: Quinolin(di)one and benzazepin(di)one derivatives. Bioorg Med Chem Lett 2006;16:658–62.

    Article  PubMed  CAS  Google Scholar 

  71. Murray PJ, Harrison LA, Johnson MR, et al. A novel series of arylpiperazines with high affinity and selectivity for the dopamine D3 receptor. Bioorg Med Chem Lett 1995;5:219–22.

    Article  CAS  Google Scholar 

  72. Newman AH, Cao J, Bennett CJ, Robarge MJ, Freeman RA, Luedtke RR. N-{4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl, butenyl and butynyl}arylcarboxamides as novel dopamine D3 receptor antagonists. Bioorg Med Chem Lett 2003;13:2179–83.

    Article  PubMed  CAS  Google Scholar 

  73. Grundt P, Prevatt KM, Cao J, et al. Heterocyclic analogues of N-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)arylcarboxamides with functionalized linking chains as novel dopamine D3 receptor ligands: potential substance abuse therapeutic agents. J Med Chem 2007;50:4135–46.

    Article  PubMed  CAS  Google Scholar 

  74. Leopoldo M, Enza L, Colabufo NA, Berardi F, Perrone R. Synthesis and binding profile of constrained analogues of N-[4-(4-arylpiperazin-1-yl)butyl]-3-methoxybenzamides, a class of potent dopamine D3 receptor ligands. J Pharm Pharmacol 2006;58:209–18.

    Article  PubMed  CAS  Google Scholar 

  75. Ding K, Chen J, Ji M, et al. Enantiomerically pure hexahydropyrazinoquinolines as potent and selective dopamine 3 subtype receptor ligands. J Med Chem 2005;48:3171–81.

    Article  PubMed  CAS  Google Scholar 

  76. Hackling A, Ghosh R, Perachon S, et al. N-(ω-(4-(Methoxyphenyl)piperazin-1-yl)alkyl)carboxamides as dopamine D2 and D3 receptor ligands. J Med Chem 2003;46: 3883–99.

    Article  PubMed  CAS  Google Scholar 

  77. Grundt P, Carlson EE, Cao J, et al. Novel heterocyclic trans olefin analogues of N-{4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl}arylcarboxamides as selective probes with high affinity for the dopamine D3 receptor. J Med Chem 2005;48:839–48.

    Article  PubMed  CAS  Google Scholar 

  78. Pilla M, Perachon S, Sautel F, et al. Selective inhibition of cocaine-seeking behavior by a partial dopamine D3 receptor agonist. Nature 1999;400:371–5.

    Article  PubMed  CAS  Google Scholar 

  79. Yuan J, Chen X, Brodbeck R, et al. NGB 2904 and NGB 2849: two highly selective dopamine D3 receptor antagonists. Bioorg Med Chem Lett 1998;8:2715–8.

    Article  PubMed  CAS  Google Scholar 

  80. Boeckler F, Gmeiner P. Dopamine D3 receptor ligands – recent advances in the control of subtype selectivity and intrinsic activity. Biochim Biophys Acta 2007;1768:871–87.

    Article  PubMed  CAS  Google Scholar 

  81. Chu W, Tu Z, McElveen E, et al. Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorg Med Chem 2005;13:77–87.

    Article  PubMed  CAS  Google Scholar 

  82. Dutta AK, Venkataraman SK, Fei X-S, Kolhatkar R, Zhang S, Reith MEA. Synthesis and biological characterization of novel hybrid 7-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydronaphthalen-2-ol and their heterocyclic bioisosteric analogues for dopamine D2 and D3 receptors. Bioorg Med Chem 2004;12:4361–73.

    Article  PubMed  CAS  Google Scholar 

  83. Dutta AK, Fei X-S, Reith MEA. A novel series of hybrid compounds derived by combining 2-aminotetralin and piperazine fragments: Binding activity at D2 and D3 receptors. Bioorg Med Chem Lett 2002;12:619–22.

    Article  PubMed  CAS  Google Scholar 

  84. Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 1991;564:203–19.

    Article  PubMed  CAS  Google Scholar 

  85. Diaz J, Levesque D, Lammers CH, et al. Phenotypical characterization of neurons expressing the dopamine D3 receptor in the rat brain. Neuroscience 1995;65:731–45.

    Article  PubMed  CAS  Google Scholar 

  86. Landwehrmeyer B, Mengod G, Palacios JM. Differential visualization of dopamine D2 and D3 receptor sites in rat brain. A comparative study using in situ hybridization histochemistry and ligand binding autoradiography. Eur J Neurosci 1993;5:145–53.

    Article  PubMed  CAS  Google Scholar 

  87. Levesque D, Diaz J, Pilon C, et al. Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 1992;89:8155–9.

    Article  PubMed  CAS  Google Scholar 

  88. Akunne HC, Towers P, Ellis GJ, et al. Characterization of binding of [3H]PD 128907, a selective dopamine D3 receptor agonist ligand, to CHO-K1 cells. Life Sci 1995;57:1401–10.

    Article  PubMed  CAS  Google Scholar 

  89. Hall H, Halldin C, Dijkstra D, et al. Autoradiographic localisation of D3-dopamine receptors in the human brain using the selective D3-dopamine receptor agonist (+)-[3H]PD 128907. Psychopharmacology (Berl) 1996;128:240.

    Article  CAS  Google Scholar 

  90. Pugsley TA, Davis MD, Akunne HC, et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther 1995;275:1355–66.

    PubMed  CAS  Google Scholar 

  91. Langer O, Nagren K, Dollé F, et al. Precursor synthesis and radiolabelling of the dopamine D2 receptor ligand [11C]raclopride from [11C]methyl triflate. J Label Compds Radiopharm 1999;42:1183–93.

    Article  CAS  Google Scholar 

  92. Mukherjee J, Christian BT, Dunigan KA, et al. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 2002;46:170–88.

    Article  PubMed  CAS  Google Scholar 

  93. Mukherjee J, Shi B, Christian BT, Chattopadhyay S, Narayanan TK. 11C-Fallypride: radiosynthesis and preliminary evaluation of a novel dopamine D2/D3 receptor PET radiotracer in non-human primate brain. Bioorg Med Chem 2004;12:95–102.

    Article  PubMed  CAS  Google Scholar 

  94. Stark D, Piel M, Hübner H, Gmeiner P, Grunder G, Rösch F. In vitro affinities of various halogenated benzamide derivatives as potential radioligands for non-invasive quantification of D2-like dopamine receptors. Bioorg Med Chem 2007;15:6819–29.

    Article  PubMed  CAS  Google Scholar 

  95. de Vries EF, Kortekaas R, van Waarde A, Dijkstra D, Elsinga PH, Vaalburg W. Synthesis and evaluation of dopamine D3 receptor antagonist 11C-GR218231 as PET tracer for P-glycoprotein. J Nucl Med 2005;46:1384–92.

    PubMed  Google Scholar 

  96. Langer O, Gulyas B, Sandell J, et al. Radiochemical labelling of the dopamine D3 receptor ligand RGH-1756. J Label Compds Radiopharm 2000;43:1069–74.

    Article  CAS  Google Scholar 

  97. Sovago J, Farde L, Halldin C, et al. Positron emission tomographic evaluation of the putative dopamine-D3 receptor ligand, [11C]RGH-1756 in the monkey brain. Neurochem Int 2004;45:609–17.

    Article  PubMed  CAS  Google Scholar 

  98. Hocke C, Prante O, Löber S, Hübner H, Gmeiner P, Kuwert T. Synthesis and radioiodination of selective ligands for the dopamine D3 receptor subtype. Bioorg Med Chem Lett 2004;14:3963–6.

    Article  PubMed  CAS  Google Scholar 

  99. Kuhnast B, Valette H, Besret L, et al. Synthesis and radiolabeling of N-[4-[4-(2-[11C]methoxyphenyl)piperazin-1-yl]butyl]benzo[b]thiophene-2-car boxamide – a potential radiotracer for D3 receptor imaging with PET. Nucl Med Biol 2006;33:785–95.

    Article  PubMed  CAS  Google Scholar 

  100. Hocke C, Prante O, Salama I, et al. 18F-Labeled FAUC 346 and BP 897 derivatives as subtype-selective potential PET radioligands for the dopamine D3 receptor. Chem Med Chem 2008;3:788–93.

    PubMed  CAS  Google Scholar 

  101. Salama I, Hocke C, Utz W, et al. Structure-selectivity investigations of D2-like receptor ligands by CoMFA and CoMSIA guiding the discovery of D3 selective PET radioligands. J Med Chem 2007;50:489–500.

    Article  PubMed  CAS  Google Scholar 

  102. Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4. Neuropsychopharmacology 1992;7:261–84.

    PubMed  CAS  Google Scholar 

  103. Van Tol HH, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991;350:610–4.

    Article  PubMed  Google Scholar 

  104. Elsinga PH, Hatano K, Ishiwata K. PET tracers for imaging of the dopaminergic system. Curr Med Chem 2006;13:2139–53.

    Article  PubMed  CAS  Google Scholar 

  105. Enguehard-Gueiffier C, Gueiffier A. Recent progress in medicinal chemistry of D4 agonists. Curr Med Chem 2006;13:2981–93.

    Article  PubMed  CAS  Google Scholar 

  106. Zhang A, Neumeyer JL, Baldessarini RJ. Recent progress in development of dopamine receptor subtype-selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 2007;107:274–302.

    Article  PubMed  CAS  Google Scholar 

  107. Boström J, Bohm M, Gundertofte K, Klebe G. A 3D QSAR study on a set of dopamine D4 receptor antagonists. J Chem Inf Comput Sci 2003;43:1020–7.

    Article  PubMed  CAS  Google Scholar 

  108. Boström J, Gundertofte K, Liljefors T. A pharmacophore model for dopamine D4 receptor antagonists. J Comput Aided Mol Des 2000;14:769–86.

    Article  PubMed  Google Scholar 

  109. Lanig H, Utz W, Gmeiner P. Comparative molecular field analysis of dopamine D4 receptor antagonists including 3- 4-(4-chlorophenyl)piperazin-1-ylmethyl pyrazolo[1,5-a]pyridine (FAUC 113), 3- 4-(4-chlorophenyl)piperazin-1-ylmethyl-1H-pyrrolo[2,3-b]pyridine (L-745,870), and clozapine. J Med Chem 2001;44:1151–7.

    Article  PubMed  CAS  Google Scholar 

  110. Glase SA, Akunne HC, Georgic LM, et al. Substituted [(4-phenylpiperazinyl)-methyl]benzamides: selective dopamine D4 agonists. J Med Chem 1997;40:1771–2.

    Article  PubMed  CAS  Google Scholar 

  111. Hsieh GC, Hollingsworth PR, Martino B, et al. Central mechanisms regulating penile erection in conscious rats: the dopaminergic systems related to the proerectile effect of apomorphine. J Pharmacol Exp Ther 2004;308:330–8.

    Article  PubMed  CAS  Google Scholar 

  112. Bernaerts P, Tirelli E. Facilitatory effect of the dopamine D4 receptor agonist PD168,077 on memory consolidation of an inhibitory avoidance learned response in C57BL/6 J mice. Behav Brain Res 2003;142:41–52.

    Article  PubMed  CAS  Google Scholar 

  113. Clifford JJ, Waddington JL. Topographically based search for an “Ethogram” among a series of novel D4 dopamine receptor agonists and antagonists. Neuropsychopharmacology 2000;22:538–44.

    Article  PubMed  CAS  Google Scholar 

  114. Melis MR, Succu S, Mascia MS, Argiolas A. PD-168077, a selective dopamine D4 receptor agonist, induces penile erection when injected into the paraventricular nucleus of male rats. Neurosci Lett 2005;379:59–62.

    Article  PubMed  CAS  Google Scholar 

  115. Matulenko MA, Hakeem AA, Kolasa T, et al. Synthesis and functional activity of (2-aryl-1-piperazinyl)-N-(3-methylphenyl)acetamides: selective dopamine D4 receptor agonists. Bioorg Med Chem 2004;12:3471–83.

    Article  PubMed  CAS  Google Scholar 

  116. Kolasa T, Matulenko MA, Hakeem AA, et al. 1-aryl-3-(4-pyridine-2-ylpiperazin-1-yl)propan-1-one oximes as potent dopamine D4 receptor agonists for the treatment of erectile dysfunction. J Med Chem 2006;49:5093–109.

    Article  CAS  PubMed  Google Scholar 

  117. Zorn SH, Jackson E, Johnson C, Lewis J, Fliri A. CP-226,269 is a selective dopamine D4 receptor agonist. Soc Neurosci Abstr 1997;23:685.

    Google Scholar 

  118. Moreland RB, Patel M, Hsieh GC, Wetter JM, Marsh K, Brioni JD. A-412997 is a selective dopamine D4 receptor agonist in rats. Pharmacol Biochem Behav 2005;82:140–7.

    Article  PubMed  CAS  Google Scholar 

  119. Stewart AO, Cowart MD, Moreland RB, et al. Dopamine D4 ligands and models of receptor activation: 2-(4-pyridin-2-ylpiperazin-1-ylmethyl)-1H-benzimidazole and related heteroarylmethylarylpiperazines exhibit a substituent effect responsible for additional efficacy tuning. J Med Chem 2004;47:2348–55.

    Article  PubMed  CAS  Google Scholar 

  120. Cowart M, Latshaw SP, Bhatia P, et al. Discovery of 2-(4-pyridin-2-ylpiperazin-1-ylmethyl)-1H-benzimidazole (ABT-724), a dopaminergic agent with a novel mode of action for the potential treatment of erectile dysfunction. J Med Chem 2004;47:3853–64.

    Article  PubMed  CAS  Google Scholar 

  121. Brioni JD, Moreland RB, Cowart M, et al. Activation of dopamine D4 receptors by ABT-724 induces penile erection in rats. Proc Natl Acad Sci U S A 2004;101:6758–63.

    Article  PubMed  CAS  Google Scholar 

  122. Patel MV, Kolasa T, Mortell K, et al. Discovery of 3-methyl-N-(1-oxy-3',4',5',6'-tetrahydro-2'H-[2,4'-bipyridine]-1'-ylmethyl )benzamide (ABT-670), an orally bioavailable dopamine D4 agonist for the treatment of erectile dysfunction. J Med Chem 2006;49:7450–65.

    Article  PubMed  CAS  Google Scholar 

  123. Browman KE, Curzon P, Pan JB, et al. A-412997, a selective dopamine D4 agonist, improves cognitive performance in rats. Pharmacol Biochem Behav 2005;82:148–55.

    Article  PubMed  CAS  Google Scholar 

  124. Hübner H, Kraxner J, Gmeiner P. Cyanoindole derivatives as highly selective dopamine D4 receptor partial agonists: Solid-phase synthesis, binding assays, and functional experiments. J Med Chem 2000;43:4563–9.

    Article  PubMed  CAS  Google Scholar 

  125. Löber S, Aboul-Fadl T, Hübner H, Gmeiner P. Di- and trisubstituted pyrazolo[1,5-a]pyridine derivatives: Synthesis, dopamine receptor binding and ligand efficacy. Bioorg Med Chem Lett 2002;12:633–6.

    Article  PubMed  Google Scholar 

  126. Löber S, Hübner H, Gmeiner P. Azaindole derivatives with high affinity for the dopamine D4 receptor: synthesis, ligand binding studies and comparison of molecular electrostatic potential maps. Bioorg Med Chem Lett 1999;9:97–102.

    Article  PubMed  Google Scholar 

  127. Moll A, Hubner H, Gmeiner P, Troschutz R. Phenylpiperazinylmethylindolecarboxylates and derivatives as selective D4-ligands. Bioorg Med Chem 2002;10:1671–9.

    Article  PubMed  CAS  Google Scholar 

  128. Einsiedel J, Hübner H, Gmeiner P. Benzamide bioisosteres incorporating dihydroheteroazole substructures: EPC synthesis and SAR leading to a selective dopamine D4 receptor partial agonist (FAUC 179). Bioorg Med Chem Lett 2001;11:2533–6.

    Article  PubMed  CAS  Google Scholar 

  129. Bergauer M, Hubner H, Gmeiner P. 2,4-Disubstituted pyrroles: synthesis, traceless linking and pharmacological investigations leading to the dopamine D4 receptor partial agonist FAUC 356. Bioorg Med Chem Lett 2002;12:1937–40.

    Article  PubMed  CAS  Google Scholar 

  130. Einsiedel J, Hübner H, Gmeiner P. Cyclic amidines as benzamide bioisosteres: EPC synthesis and SAR studies leading to the selective dopamine D4 receptor agonist FAUC 312. Bioorg Med Chem Lett 2003;13:851–4.

    Article  PubMed  CAS  Google Scholar 

  131. Prante O, Löber S, Hübner H, Gmeiner P, Kuwert T. Synthesis and in vitro evaluation of iodine labelled pyrazolo[1,5-a]pyridines as highly selective dopamine D4 receptor ligands. J Label Compds Radiopharm 2001;44:849–58.

    Article  CAS  Google Scholar 

  132. Löber S, Ortner B, Bettinetti L, Hübner H, Gmeiner P. Analogs of the dopamine D4 receptor ligand FAUC 113 with planar- and central-chirality. Tetrahedron Asymmetry 2002;13:2303–10.

    Article  Google Scholar 

  133. Enguehard-Gueiffier C, Hübner H, El Hakmaoui A, et al. 2-[(4-Phenylpiperazin-1-yl)methyl]imidazo(di)azines as selective D4-ligands. Induction of penile erection by 2-[4-(2-methoxyphenyl)piperazin-1-ylmethyl]imidazo[1,2-a]pyridine (PIP3EA), a potent and selective D4 partial agonist. J Med Chem 2006;49:3938–47.

    Article  PubMed  CAS  Google Scholar 

  134. Melis MR, Succu S, Sanna F, et al. PIP3EA and PD-168077, two selective dopamine D4 receptor agonists, induce penile erection in male rats: site and mechanism of action in the brain. Eur J Neurosci 2006;24:2021–30.

    Article  PubMed  Google Scholar 

  135. Succu S, Sanna F, Melis T, Boi A, Argiolas A, Melis MR. Stimulation of dopamine receptors in the paraventricular nucleus of the hypothalamus of male rats induces penile erection and increases extra-cellular dopamine in the nucleus accumbens: involvement of central oxytocin. Neuropharmacology 2007;52:1034–43.

    Article  PubMed  CAS  Google Scholar 

  136. Wang X, Bhatia PA, Daanen JF, et al. Synthesis and evaluation of 3-aryl piperidine analogs as potent and efficacious dopamine D4 receptor agonists. Bioorg Med Chem 2005;13:4667–78.

    Article  PubMed  CAS  Google Scholar 

  137. Powell SB, Paulus MP, Hartman DS, Godel T, Geyer MA. RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology 2003;44:473–81.

    Article  PubMed  CAS  Google Scholar 

  138. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 2002;41:2596–9.

    Article  PubMed  CAS  Google Scholar 

  139. Löber S, Hübner H, Gmeiner P. Synthesis and biological investigations of dopaminergic partial agonists preferentially recognizing the D4 receptor subtype. Bioorg Med Chem Lett 2006;16:2955–9.

    Article  PubMed  CAS  Google Scholar 

  140. Gazi L, Bobirnac I, Danzeisen M, et al. The agonist activities of the putative antipsychotic agents, L-745,870 and U-101958 in HEK293 cells expressing the human dopamine D4.4 receptor. Br J Pharmacol 1998;124:889–96.

    Article  PubMed  CAS  Google Scholar 

  141. Gazi L, Sommer B, Nozulak J, Schoeffter P. NGD 94-1 as an agonist at human recombinant dopamine D4.4 receptors expressed in HEK293 cells. Eur J Pharmacol 1999;372:R9–10.

    Article  PubMed  CAS  Google Scholar 

  142. Kulagowski JJ, Broughton HB, Curtis NR, et al. 3-((4-(4-Chlorophenyl)piperazin-1-yl)-methyl)-1H-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem 1996;39:1941–2.

    Article  PubMed  CAS  Google Scholar 

  143. Patel S, Freedman S, Chapman KL, et al. Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J Pharmacol Exp Ther 1997;283:636–47.

    PubMed  CAS  Google Scholar 

  144. Schlachter SK, Poel TJ, Lawson CF, et al. Substituted 4-aminopiperidines having high in vitro affinity and selectivity for the cloned human dopamine D4 receptor. Eur J Pharmacol 1997;322:283–6.

    Article  PubMed  CAS  Google Scholar 

  145. Tallman JF, Primus RJ, Brodbeck R, et al. NGD 94-1: identification of a novel, high-affinity antagonist at the human dopamine D4 receptor. J Pharmacol Exp Ther 1997;282:1011–9.

    PubMed  CAS  Google Scholar 

  146. Gazi L, Bobirnac I, Danzeisen M, et al. Receptor density as a factor governing the efficacy of the dopamine D4 receptor ligands, L-745,870 and U-101958 at human recombinant D4.4 receptors expressed in CHO cells. Br J Pharmacol 1999;128:613–20.

    Article  PubMed  CAS  Google Scholar 

  147. Seeman P, Guan HC, Van Tol HH. Dopamine D4 receptors elevated in schizophrenia. Nature 1993;365:441–5.

    Article  PubMed  CAS  Google Scholar 

  148. Bristow LJ, Collinson N, Cook GP, et al. L-745,870, a subtype selective dopamine D4 receptor antagonist, does not exhibit a neuroleptic-like profile in rodent behavioral tests. J Pharmacol Exp Ther 1997;283:1256–63.

    PubMed  CAS  Google Scholar 

  149. Bristow LJ, Kramer MS, Kulagowski J, Patel S, Ragan CI, Seabrook GR. Schizophrenia and L-745,870, a novel dopamine D4 receptor antagonist. Trends Pharmacol Sci 1997;18:186–8.

    PubMed  CAS  Google Scholar 

  150. Löber S, Hübner H, Utz W, Gmeiner P. Rationally based efficacy tuning of selective dopamine D4 receptor ligands leading to the complete antagonist 2-[4-(4-chlorophenyl)piperazin-1-yl]methylpyrazolo[1,5-a]pyridine (FAUC 213). J Med Chem 2001;44:2691–4.

    Article  PubMed  CAS  Google Scholar 

  151. Boeckler F, Russig H, Zhang W, et al. FAUC 213, a highly selective dopamine D4 receptor full antagonist, exhibits atypical antipsychotic properties in behavioural and neurochemical models of schizophrenia. Psychopharmacology (Berl) 2004;175:7–17.

    Article  CAS  Google Scholar 

  152. Huang Y, Kegeles LS, Bae S, et al. Synthesis of potent and selective dopamine D4 antagonists as candidate radioligands. Bioorg Med Chem Lett 2001;11:1375–7.

    Article  PubMed  CAS  Google Scholar 

  153. Sanner MA, Chappie TA, Dunaiskis AR, et al. Synthesis, sar and pharmacology of CP-293,019: a potent, selective dopamine D4 receptor antagonist. Bioorg Med Chem Lett 1998;8:725–30.

    Article  PubMed  CAS  Google Scholar 

  154. Merchant KM, Gill GS, Harris DW, et al. Pharmacological characterization of U-101387, a dopamine D4 receptor selective antagonist. J Pharmacol Exp Ther 1996;279:1392–403.

    PubMed  CAS  Google Scholar 

  155. TenBrink RE, Bergh CL, Duncan JN, et al. (S)-(-)-4-[4-[2-(isochroman-1-yl)ethyl]-piperazin-1-yl] benzenesulfonamide, a selective dopamine D4 antagonist. J Med Chem 1996;39:2435–7.

    Article  PubMed  CAS  Google Scholar 

  156. Corrigan MH, Gallen CC, Bonura ML, Merchant KM. Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol Psychiatry 2004;55:445–51.

    Article  PubMed  CAS  Google Scholar 

  157. Wedemeyer C, Goutman JD, Avale ME, Franchini LF, Rubinstein M, Calvo DJ. Functional activation by central monoamines of human dopamine D4 receptor polymorphic variants coupled to GIRK channels in Xenopus oocytes. Eur J Pharmacol 2007;562:165–73.

    Article  PubMed  CAS  Google Scholar 

  158. Thurkauf A, Chen X, Zhang S, et al. 1H-Pyrazolo-[3,4-c]cyclophepta[1,2-c]thiophenes: a unique structural class of dopamine D4 selective ligands. Bioorg Med Chem Lett 2003;13:2921–4.

    Article  PubMed  CAS  Google Scholar 

  159. Nakane M, Cowart MD, Hsieh GC, et al. 2-[4-(3,4-Dimethylphenyl)piperazin-1-ylmethyl]-1H benzoimidazole (A-381393), a selective dopamine D4 receptor antagonist. Neuropharmacology 2005;49:112–21.

    Article  PubMed  CAS  Google Scholar 

  160. Bitner RS, Nikkel AL, Otte S, et al. Dopamine D4 receptor signaling in the rat paraventricular hypothalamic nucleus: evidence of natural coupling involving immediate early gene induction and mitogen activated protein kinase phosphorylation. Neuropharmacology 2006;50:521–31.

    Article  PubMed  CAS  Google Scholar 

  161. Audouze K, Nielsen EO, Peters D. New series of morpholine and 1,4-oxazepane derivatives as dopamine D4 receptor ligands: synthesis and 3D-QSAR model. J Med Chem 2004;47:3089–104.

    Article  PubMed  CAS  Google Scholar 

  162. Oh SJ, Lee KC, Lee SY, et al. Synthesis and evaluation of fluorine-substituted 1H-pyrrolo[2,3-b]pyridine derivatives for dopamine D4 receptor imaging. Bioorg Med Chem 2004;12:5505–13.

    Article  PubMed  CAS  Google Scholar 

  163. Egle I, Barriault N, Bordeleau M, et al. N-(1-Benzylpyrrolidin-3-yl)arylbenzamides as potent and selective human dopamine D4 antagonists. Bioorg Med Chem Lett 2004;14:4847–50.

    Article  PubMed  CAS  Google Scholar 

  164. Heindl C, Hübner H, Gmeiner P. Ex-chiral pool synthesis and receptor binding studies of 4-substituted prolinol derivatives. Tetrahedron Asymmetry 2003;14:3141–52.

    Article  CAS  Google Scholar 

  165. Nishimura T, Igarashi J, Sunagawa M. Conformational analysis of tandospirone in aqueous solution: lead evolution of potent dopamine D4 receptor ligands. Bioorg Med Chem Lett 2001;11:1141–4.

    Article  PubMed  CAS  Google Scholar 

  166. Awadallah FM, Muller F, Lehmann J, Abadi AH. Synthesis of novel lactam derivatives and their evaluation as ligands for the dopamine receptors, leading to a D4-selective ligand. Bioorg Med Chem 2007;15:5811–8.

    Article  PubMed  CAS  Google Scholar 

  167. Defagot MC, Antonelli MC. Autoradiographic localization of the putative D4 dopamine receptor in rat brain. Neurochem Res 1997;22:401–7.

    Article  PubMed  CAS  Google Scholar 

  168. Lahti RA, Roberts RC, Tamminga CA. D2-family receptor distribution in human postmortem tissue: an autoradiographic study. Neuroreport 1995;6:2505–12.

    Article  PubMed  CAS  Google Scholar 

  169. Murray AM, Hyde TM, Knable MB, et al. Distribution of putative D4 dopamine receptors in postmortem striatum from patients with schizophrenia. J Neurosci 1995;15:2186–91.

    PubMed  CAS  Google Scholar 

  170. Defagot MC, Falzone TL, Low MJ, Grandy DK, Rubinstein M, Antonelli MC. Quantitative analysis of the dopamine D4 receptor in the mouse brain. J Neurosci Res 2000;59:202–8.

    Article  PubMed  CAS  Google Scholar 

  171. De La Garza R, Madras BK. [3H]PNU-101958, a D4 dopamine receptor probe, accumulates in prefrontal cortex and hippocampus of non-human primate brain. Synapse 2000;37:232–44.

    Article  Google Scholar 

  172. Primus RJ, Thurkauf A, Xu J, et al. II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94-1. J Pharmacol Exp Ther 1997;282:1020–7.

    PubMed  CAS  Google Scholar 

  173. Matulenko MA, Surber B, Fan L, et al. Synthesis and activity of 2-[4-(4-[3H]-2-cyanophenyl)piperazinyl]-N-(2,4,6-[3H]3-3-methylphenyl)acetamide: a selective dopamine D4 receptor agonist and radioligand. Bioorg Med Chem Lett 2004;14:5095–8.

    Article  PubMed  CAS  Google Scholar 

  174. Moreland RB, Terranova MA, Chang R, et al. [3H] A-369508 ([2-[4-(2-cyanophenyl)-1-piperazinyl]-N-(3-methylphenyl) acetamide): an agonist radioligand selective for the dopamine D4 receptor. Eur J Pharmacol 2004;497:147–54.

    Article  PubMed  CAS  Google Scholar 

  175. Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G. No D2 receptor increase in PET study of schizophrenia. Arch Gen Psychiatry 1987;44:671–2.

    Article  PubMed  CAS  Google Scholar 

  176. Wong DF, Wagner HN, Jr., Tune LE, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 1986;234:1558–63.

    Article  PubMed  CAS  Google Scholar 

  177. Bender D, Holschbach M, Stöcklin G. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl Med Biol 1994;21:921–5.

    Article  PubMed  CAS  Google Scholar 

  178. Boy C, Klimke A, Holschbach M, et al. Imaging dopamine D4 receptors in the living primate brain: a positron emission tomography study using the novel D1/D4 antagonist C-11 SDZ GLC 756. Synapse 1998;30:341–50.

    Article  PubMed  CAS  Google Scholar 

  179. Hidaka K, Tada S, Matsumoto M, Ohmori J, Maeno K, Yamaguchi T. YM-50001: a novel, potent and selective dopamine D4 receptor antagonist. Neuroreport 1996;7:2543–6.

    Article  PubMed  CAS  Google Scholar 

  180. Perrone R, Berardi F, Colabufo NA, Leopoldo M, Tortorella V. N-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide: a potent and selective dopamine D4 ligand. J Med Chem 1998;41:4903–9.

    Article  PubMed  CAS  Google Scholar 

  181. Langer O, Halldin C, Chou YH, et al. Carbon-11 PB-12: An attempt to visualize the dopamine D4 receptor in the primate brain with positron emission tomography. Nucl Med Biol 2000;27:707–14.

    Article  PubMed  CAS  Google Scholar 

  182. Zhang MR, Haradahira T, Maeda J, et al. Syntheses and pharmacological evaluation of two potent antagonists for dopamine D4 receptors: [11C]YM-50001 and N-[2-[4-(4-chlorophenyl)-piperizin-1-yl]ethyl]-3-[11C]methoxybenzamide. Nucl Med Biol 2002;29:233–41.

    Article  PubMed  CAS  Google Scholar 

  183. Unangst PC, Capiris T, Connor DT, et al. Chromeno[3,4-c]pyridin-5-ones: selective human dopamine D4 receptor antagonists as potential antipsychotic agents. J Med Chem 1997;40:2688–93.

    Article  PubMed  CAS  Google Scholar 

  184. Zhang M-R, Haradahira T, Maeda J, et al. Synthesis and evaluation of 3-(4-chlorobenzyl)-8-[11C]methoxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one: a PET tracer for imaging sigma1 receptors. Nucl Med Biol 2002;29:469–76.

    Article  PubMed  CAS  Google Scholar 

  185. Tian H-B, Yin D-Z, Zhang L, et al. Dopamine D4 receptor antagonist 3-(4-[18F]fluorobenzyl)-8-methoxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one([18F]FMTP): Radiosynthesis and in vivo characterization in rats. Appl Radiat Isot 2005;63:333–42.

    Article  CAS  Google Scholar 

  186. Li G-C, Yin D-Z, Wang M-W, Cheng D-F, Wang Y-X. Syntheses of two potential dopamine D4 receptor radioligands: 18F-labeled chromeno[3,4-c]pyridin-5-ones. Radiochim Acta 2006;94:119–22.

    Article  CAS  Google Scholar 

  187. Eskola O, Bergman J, Lehikoinen P, et al. Synthesis of 3-[[4-(4-[18F]fluorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine. J Label Compds Radiopharm 2002;45:687–96.

    Article  CAS  Google Scholar 

  188. Kung M-P, Stevenson DA, Zhuang Z-P, et al. Characterization of a novel iodinated ligand, IPMPP, for human dopamine D4 receptors expressed in CHO cells. Life Sci 1996;60:91–100.

    Article  Google Scholar 

  189. Patel S, Patel S, Marwood R, et al. Identification and pharmacological characterization of [125I]L750,667, a novel radioligand for the dopamine D4 receptor. Mol Pharmacol 1996;50:1658–64.

    PubMed  CAS  Google Scholar 

  190. Staley JK, Tamagnan G, Baldwin RM, et al. SPECT imaging with the D-4 receptor antagonist L-750,667 in nonhuman primate brain. Nucl Med Biol 2000;27:547–56.

    Article  PubMed  CAS  Google Scholar 

  191. Boyfield I, Brown TH, Coldwell MC, et al. Design and synthesis of 2-naphthoate esters as selective dopamine D4 antagonists. J Med Chem 1996;39:1946–8.

    Article  PubMed  CAS  Google Scholar 

  192. Matarrese M, Soloviev D, Moresco RM, et al. Synthesis and in vivo evaluation of 3-[11C]methyl-(3-methoxy-naphthalen)-2-yl-(1-benzyl-piperidin)-4-yl-acetate (SB-235753), as a putative dopamine D4 receptors antagonist for PET. J Label Compds Radiopharm 2000;43:359–74.

    Article  CAS  Google Scholar 

  193. Prante O, Hocke C, Löber S, Hübner H, Gmeiner P, Kuwert T. Tissue distribution of radioiodinated FAUC113 – Assessment of a pyrazolo [1,5-a] pyridine based dopamine D4 receptor radioligand candidate. Nuklearmed-Nucl Med 2006;45:41–8.

    CAS  Google Scholar 

  194. Tietze R, Hocke C, Löber S, et al. Syntheses and radiofluorination of two derivatives of 5-cyano-indole as selective ligands for the dopamine subtype-4 receptor. J Label Compds Radiopharm 2006;49:55–70.

    Article  CAS  Google Scholar 

  195. Tietze R, Löber S, Hübner H, Gmeiner P, Kuwert T, Prante O. Discovery of a dopamine D4 selective PET ligand candidate taking advantage of a click chemistry based REM linker. Bioorg Med Chem Lett 2008;18:982–7.

    Article  CAS  Google Scholar 

  196. Prante O, Tietze R, Hocke C, et al. Synthesis, radiofluorination, and in vitro evaluation of pyrazolo[1,5-a]pyridine-based dopamine D4 receptor ligands: Discovery of an inverse agonist radioligand for PET. J Med Chem 2008;51:1800–10.

    Article  PubMed  CAS  Google Scholar 

  197. Tietze R, Hocke C, Löber S, et al. In-vitro characterization, 18F-synthesis and biodistribution of a pyrazolo[1,5-a]pyridine based dopamine D4 receptor radioligand candidate. J Label Compds Radiopharm 2007;50:S74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Gmeiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Prante, O., Dörfler, M., Gmeiner, P. (2010). Dopamine Receptor Subtype-Selective Drugs: D2-Like Receptors. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_5

Download citation

Publish with us

Policies and ethics