Skip to main content

Purification of Basolateral Integral Membrane Proteins by Cationic Colloidal Silica-Based Apical Membrane Subtraction

  • Protocol
Membrane Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 528))

Abstract

Epithelial cell polarity mediates many essential biological functions and perturbation of the apical/basolateral divide is a hallmark of epithelial to mesenchymal transition in carcinoma. Therefore, correct targeting of proteins to the apical and basolateral surfaces is essential to proper epithelial cell function. However, proteomic characterisation of apical/basolateral sorting has been largely ignored, due to ineffectual separation techniques and contamination of plasma-membrane preparations with housekeeping proteins. Here we describe a method that strips the apical membrane from the adherent cells and releases the intracellular contents, thereby leaving the basolateral membrane available for stringent washes and collection. Analysis of the basolateral membrane of an adherent colon adenocarcinoma cell line resulted in 66% of identified proteins being integral membrane proteins, which possessed either a transmembrane domain or lipid modification, including 35 CD antigens. Based on the abundance of peptides from basolateral marker proteins, this method efficiently captures basolateral integral membrane proteins, with minimal contamination from other membranes and basic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabilloud, T. (2003). Membrane proteins ride shotgun. Nat. Biotechnology 21, 508–10.

    Article  CAS  Google Scholar 

  2. Yates, J. R., 3rd, Gilchrist, A., Howell, K. E., and Bergeron, J. J. (2005). Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6, 702–14.

    Article  CAS  PubMed  Google Scholar 

  3. Goode, R. J. A., and Simpson, R. J. (2005) Handling membrane proteins in “Encyclopedia of genetics, genomics, proteomics, and bioinformatics” (Dunn, M., Jorde, L. B., Little, D., Subramanian, S. Eds.), John Wiley & Sons Ltd., Hoboken, N.J.

    Google Scholar 

  4. Shin, B. K., Wang, H., Yim, A. M., Le Naour, F., Brichory, F., Jang, J. H., Zhao, R., Puravs, E., Tra, J., Michael, C. W., Misek, D. E., and Hanash, S. M. (2003). Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278, 7607–16.

    Article  CAS  PubMed  Google Scholar 

  5. Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J., Moritz, R. L., and Reid, G. E. (2000). Proteomic analysis of the human colon carcinoma cell line (LIM 1215): development of a membrane protein database. Electrophoresis 21, 1707–32.

    Article  CAS  PubMed  Google Scholar 

  6. Adam, P. J., Boyd, R., Tyson, K. L., Fletcher, G. C., Stamps, A., Hudson, L., Poyser, H. R., Redpath, N., Griffiths, M., Steers, G., Harris, A. L., Patel, S., Berry, J., Loader, J. A., Townsend, R. R., Daviet, L., Legrain, P., Parekh, R., and Terrett, J. A. (2003). Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer. J Biol Chem 278, 6482–89.

    Article  CAS  PubMed  Google Scholar 

  7. Jang, J. H., and Hanash, S. (2003). Profiling of the cell surface proteome. Proteomics 3, 1947–54.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, W. N., Yu, L. R., Strittmatter, E. F., Thrall, B. D., Camp, D. G., and Smith, R. D. (2003). Detection of in situ labeled cell surface proteins by mass spectrometry: application to the membrane subproteome of human mammary epithelial cells. Proteomics 3, 1647–51.

    Article  CAS  PubMed  Google Scholar 

  9. Le Bivic, A., Sambuy, Y., Mostov, K., and Rodriguez-Boulan, E. (1990). Vectorial targeting of an endogenous apical membrane sialoglycoprotein and uvomorulin in MDCK cells. J Cell Biol 110, 1533–9.

    Article  PubMed  Google Scholar 

  10. Peirce, M. J., Wait, R., Begum, S., Saklatvala, J., and Cope, A. P. (2004). Expression profiling of lymphocyte plasma membrane proteins. Mol Cell Proteomics 3, 56–65.

    CAS  PubMed  Google Scholar 

  11. Chaney, L. K., and Jacobson, B. S. (1983). Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J Biol Chem 258, 10062–72.

    CAS  PubMed  Google Scholar 

  12. Jacobson, B. S., Schnitzer, J. E., McCaffery, M., and Palade, G. E. (1992). Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol 58, 296–306.

    CAS  PubMed  Google Scholar 

  13. Jacobson, B. S., Stolz, D. B., and Schnitzer, J. E. (1996). Identification of endothelial cell-surface proteins as targets for diagnosis and treatment of disease. Nat Med 2, 482–84.

    Article  CAS  PubMed  Google Scholar 

  14. Oh, P., Li, Y., Yu, J., Durr, E., Krasinska, K. M., Carver, L. A., Testa, J. E., and Schnitzer, J. E. (2004). Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–35.

    Article  CAS  PubMed  Google Scholar 

  15. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J., and Oh, P. (1995). Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–39.

    Article  CAS  PubMed  Google Scholar 

  16. Schnitzer, J. E., Oh, P., Jacobson, B. S., and Dvorak, A. M. (1995). Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc Nat. Acad. Sci. USA 92, 1759–63.

    Article  CAS  PubMed  Google Scholar 

  17. Spector, D. L., Goldman, R. D., and Leinwand, L. A. (1998) Cells: A Laboratory Manual 1, 35.1–35.14.

    Google Scholar 

  18. Rahbar, A. M., and Fenselau, C. (2004). Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res 3, 1267–77.

    Article  CAS  PubMed  Google Scholar 

  19. Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P. B. (1982). Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol 93, 97–102.

    Article  CAS  PubMed  Google Scholar 

  20. Wu, C. H., Apweiler, R., Bairoch, A., Natale, D. A., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Mazumder, R., O’Donovan, C., Redaschi, N., and Suzek, B. (2006). The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34, D187–91.

    Article  CAS  PubMed  Google Scholar 

  21. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567–80.

    Article  CAS  PubMed  Google Scholar 

  22. Bosman, F. T. (1993). Integrins: cell adhesives and modulators of cell function. Histochem J 25, 469–77.

    Article  CAS  PubMed  Google Scholar 

  23. Amerongen, H. M., Mack, J. A., Wilson, J. M., and Neutra, M. R. (1989). Membrane domains of intestinal epithelial cells: distribution of Na+,K+-ATPase and the membrane skeleton in adult rat intestine during fetal development and after epithelial isolation. J Cell Biol 109, 2129–38.

    Article  CAS  PubMed  Google Scholar 

  24. Green, K. J., and Gaudry, C. A. (2000). Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 1, 208–16.

    Article  CAS  PubMed  Google Scholar 

  25. Martosella, J., Zolotarjova, N., Liu, H., Moyer, S. C., Perkins, P. D., and Boyes, B. E. (2006). High recovery HPLC separation of lipid rafts for membrane proteome analysis. J Proteome Res 5, 1301–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goode, R.J., Simpson, R.J. (2009). Purification of Basolateral Integral Membrane Proteins by Cationic Colloidal Silica-Based Apical Membrane Subtraction. In: Peirce, M.J., Wait, R. (eds) Membrane Proteomics. Methods in Molecular Biology™, vol 528. Humana Press. https://doi.org/10.1007/978-1-60327-310-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-310-7_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-309-1

  • Online ISBN: 978-1-60327-310-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics