Skip to main content

Ischemic Stroke: The Role of Cardiac CT

  • Chapter
  • First Online:
CT of the Heart

Part of the book series: Contemporary Medical Imaging ((CMI))

Abstract

Investigation of potential embolic sources is an important diagnostic step in managing patients with acute ischemic stroke or transient ischemic attack, especially when the mechanism is considered to be embolic. During the past decade, cardiac CT has been tested and compared with transesophageal echocardiography (TEE) for the diagnosis of cardioembolic sources. Many studies showed that cardiac CT is a very useful and powerful modality for the detection of cardioembolic sources in stroke patients. However, based on current evidence, cardiac CT is not recommended for the use in the initial evaluation of intracardiac structures in stroke patients. In addition, cardiac CT imaging has fundamental disadvantages including radiation dose and use of iodine contrast media. Continued technological advances requiring less contrast and ionizing radiation could increase the importance of cardiac CT in this field in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonita R. Epidemiology of stroke. Lancet. 1992;339:342–4.

    Article  CAS  Google Scholar 

  2. Sacco RL, Adams R, Albers G, et al. Guidelines for prevention stroke in patients with ischemic stroke or transient ischemic attack. Stroke. 2006;37:577–617.

    Article  Google Scholar 

  3. Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke. Chest. 2004;126:483S–512S.

    Article  CAS  Google Scholar 

  4. Kistler JP. Cerebral embolism. Compr Ther. 1996;22:515–30.

    CAS  PubMed  Google Scholar 

  5. McNamara RL, Lima JA, Whelton PK, Powe NR. Echocardiographic identification of cardiovascular sources of emboli to guide clinical management of stroke: a cost-effectiveness analysis. Ann Intern Med. 1997;127:775–87.

    Article  CAS  Google Scholar 

  6. Pearson AC, Labovitz AJ, Tatineni S, Gomez CR. Superiority of transesophageal echocardiography in detecting cardiac source of embolism in patients with cerebral ischemia of uncertain etiology. J Am Coll Cardiol. 1991;17:66–72.

    Article  CAS  Google Scholar 

  7. Leung DY, Black IW, Cranney GB, et al. Selection of patients for transesophageal echocardiography after stroke and systemic embolic events: role of transthoracic echocardiography. Stroke. 1995;26:1820–4.

    Article  CAS  Google Scholar 

  8. Daniel WG, Mugge A. Transesophageal echocardiography. N Engl J Med. 1995;332:1268–79.

    Article  CAS  Google Scholar 

  9. de Bruijn SF, Agema WR, Lammers GJ, et al. Transesophageal echocardiography is superior to transthoracic echocardiography in management of patients of any age with transient ischemic attack or stroke. Stroke. 2006;37:2531–44.

    Article  Google Scholar 

  10. Harloff A, Handke M, Reinhard M, et al. Therapeutic strategies after examination by transesophageal echocardiography in 503 patients with ischemic stroke. Stroke. 2006;37:859–64.

    Article  Google Scholar 

  11. Rauh R, Fischereder M, Spengel FA. Transesophageal echocardiography in patients with focal cerebral ischemia of unknown cause. Stroke. 1996;27:691–4.

    Article  CAS  Google Scholar 

  12. Strandberg M, Marttila RJ, Helenius H, Hartiala J. Transoesophageal echocardiography in selecting patients for anticoagulation after ischaemic stroke or transient ischaemic attack. J Neurol Neurosurg Psychiatry. 2002;73:29–33.

    Article  CAS  Google Scholar 

  13. Nikolaou K, Flohr T, Knez A, et al. Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging. 2004;20:535–40.

    Article  Google Scholar 

  14. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol. 2005;46:552–7.

    Article  Google Scholar 

  15. Mollet NR, Cademartiri F, van Mieghem CA, et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation. 2005;112:2318–23.

    Article  Google Scholar 

  16. Boxt LM, Lipton MJ, Kwong RY, Rybicki F, Clouse ME. Computed tomography for assessment of cardiac chambers, valves, myocardium and pericardium. Cardiol Clin. 2003;21:561–85.

    Article  Google Scholar 

  17. Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke: definitions for use in a multicenter clinical trial. Stroke. 1993;24:35–41.

    Article  Google Scholar 

  18. Doufekias E, Segal AZ, Kizer JR. Cardiogenic and aortogenic brain embolism. J Am Coll Cardiol. 2008;51:1049–59.

    Article  Google Scholar 

  19. Wolber T, Maeder M, Atefy R, et al. Should routine echocardiography be performed in all patients with stroke? J Stroke Cerebrovasc Dis. 2007;16:1–7.

    Article  Google Scholar 

  20. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301:500–7.

    Article  CAS  Google Scholar 

  21. Heinrich MC, Häberle L, Müller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250:68–86.

    Article  Google Scholar 

  22. Honoris L, Zhong Y, Chu E, et al. Comparison of contrast enhancement, image quality and tolerability in coronary CT angiography using 4 contrast agents: a prospective randomized trial. Int J Cardiol. 2015;186:126–8.

    Article  Google Scholar 

  23. Agmon Y, Khandheria BK, Gentile F, Seward JB. Echocardiographic assessment of the left atrial appendage. J Am Coll Cardiol. 1999;34:1867–77.

    Article  CAS  Google Scholar 

  24. Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function and role in thromboembolism. Heart. 1999;82:547–55.

    Article  CAS  Google Scholar 

  25. Achenbach S, Sacher D, Ropers D, et al. Electron beam computed tomography for the detection of left atrial thrombi in patients with atrial fibrillation. Heart. 2004;90:1477–8.

    Article  CAS  Google Scholar 

  26. Shapiro MD, Neilan TG, Jassal DS, et al. Multidetector computed tomography for the detection of left atrial appendage thrombus: a comparative study with transesophageal echocardiography. J Comput Assist Tomogr. 2007;31:905–9.

    Article  Google Scholar 

  27. Singh NK, Nallamothu N, Zuck VP, Issa ZF. Left atrial appendage filling defects on 64-slice multidetector computed tomography in patients undergoing pulmonary vein isolation: predictors and comparison to transesophageal echocardiography. J Comput Assist Tomogr. 2009;33:946–51.

    Article  Google Scholar 

  28. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6:185–94.

    Article  Google Scholar 

  29. Kim YY, Klein AL, Halliburton SS, et al. Left atrial appendage filling defects identified by multidetector computed tomography in patients undergoing radiofrequency pulmonary vein antral isolation: a comparison with transesophageal echocardiography. Am Heart J. 2007;154:1199–205.

    Article  Google Scholar 

  30. Hur J, Kim YJ, Nam JE, et al. Thrombus in the left atrial appendage in stroke patients: detection with cardiac CT angiography: a preliminary report. Radiology. 2008;249:81–7.

    Article  Google Scholar 

  31. Vaitkus PT, Barnathan ES. Embolic potential, prevention and management of mural thrombus complicating anterior myocardial infarction: a meta-analysis. J Am Coll Cardiol. 1993;22:1004–9.

    Article  CAS  Google Scholar 

  32. Srichai MB, Junor C, Rodriguez LL, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152:75–84.

    Article  Google Scholar 

  33. Weinsaft JW, Kim HW, Shah DJ, et al. Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol. 2008;52:148–57.

    Article  Google Scholar 

  34. Bittencourt MS, Achenbach S, Marwan M, et al. Left ventricular thrombus attenuation characterization in cardiac computed tomography angiography. J Cardiovasc Comput Tomogr. 2012;6:121–6.

    Article  Google Scholar 

  35. Holmes DR, Reddy VY, Turi ZG, et al. PROTECT AF Investigators. Percutaneous closure of the left atrial appendage versus warfarin therapy for prevention of stroke in patients with atrial fibrillation: a randomized non-inferiority trial. Lancet. 2009;374:534–42.

    Google Scholar 

  36. Garcia-Fernandez MA, Perez-David E, Quiles J, et al. Role of left atrial appendage obliteration in stroke reduction in patients with mitral valve prosthesis: a transesophageal echocardiographic study. J Am Coll Cardiol. 2003;42:1253–8.

    Article  Google Scholar 

  37. Hur J, Kim YJ, Lee HJ, et al. Left atrial appendage thrombi in stroke patients: detection with two-phase cardiac CT angiography versus transesophageal echocardiography. Radiology. 2009;251:683–90.

    Article  Google Scholar 

  38. Kim SC, Chun EJ, Choi SI, et al. Differentiation between spontaneous echocardiographic contrast and left atrial appendage thrombus in patients with suspected embolic stroke using two-phase multidetector computed tomography. Am J Cardiol. 2010;106:1174–81.

    Article  Google Scholar 

  39. Hur J, Kim YJ, Lee HJ, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke. 2011;42:2471–7.

    Article  Google Scholar 

  40. Budoff MJ. Maximizing dose reductions with cardiac CT. Int J Cardiovasc Imaging. 2009;25:279–87.

    Article  Google Scholar 

  41. Castillo JG, Silvay G. Characterization and management of cardiac tumors. Semin Cardiothorac Vasc Anesth. 2010;14:6–20.

    Article  Google Scholar 

  42. Bjessmo S, Ivert T. Cardiac myxoma: 40 years’ experience in 63 patients. Ann Thorac Surg. 1997;63:697–700.

    Article  CAS  Google Scholar 

  43. Sparrow PJ, Kurian JB, Jones TR, Sivananthan MU. MR imaging of cardiac tumors. Radiographics. 2005;25:1255–76.

    Article  Google Scholar 

  44. Kim EY, Choe YH, Sung K, Park SW, Kim JH, Ko YH. Multidetector CT and MR imaging of cardiac tumors. Korean J Radiol. 2009;10:164–75.

    Article  Google Scholar 

  45. Scheffel H, Baumueller S, Stolzmann P, et al. Atrial myxomas and thrombi: comparison of imaging features on CT. AJR Am J Roentgenol. 2009;192:639–45.

    Article  Google Scholar 

  46. Hong YJ, Hur J, Kim YJ, et al. Dual-energy cardiac computed tomography for differentiating cardiac myxoma from thrombus. Int J Card Imaging. 2014;30:121–8.

    Article  Google Scholar 

  47. Kerut EK, Norfleet WT, Plotnick GD, et al. Patent foramen ovale: a review of associated conditions and the impact of physiological size. J Am Coll Cardiol. 2001;38:613–23.

    Article  CAS  Google Scholar 

  48. Woods TD, Patel A. A critical review of patent foramen ovale detection using saline contrast echocardiography: when bubbles lie. J Am Soc Echocardiogr. 2006;19:215–22.

    Article  Google Scholar 

  49. Pinto FJ. When and how to diagnose patent foramen ovale. Heart. 2005;91:438–40.

    Article  CAS  Google Scholar 

  50. Kim YJ, Hur J, Shim CY, et al. Patent foramen ovale: diagnosis with multidetector CT: comparison with transesophageal echocardiography. Radiology. 2009;250:61–7.

    Article  Google Scholar 

  51. Kim YJ, Hur J, Choe KO, et al. Interatrial shunt detected in coronary computed tomography angiography: differential features of a patent foramen ovale and an atrial septal defect. J Comput Assist Tomogr. 2008;32:663–7.

    Article  Google Scholar 

  52. Mas JL, Arquizan C, Lamy C, et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med. 2001;345:1740–6.

    Article  CAS  Google Scholar 

  53. Mylonakis E, Calderwood SB. Infective endocarditis in adults. N Engl J Med. 2001;345:1318–30.

    Article  CAS  Google Scholar 

  54. Cabell CH, Pond KK, Peterson GE, et al. The risk of stroke and death in patients with aortic and mitral valve endocarditis. Am Heart J. 2001;142:75–80.

    Article  CAS  Google Scholar 

  55. Di Salvo G, Habib G, Pergola V, et al. Echocardiography predicts embolic events in infective endocarditis. J Am Coll Cardiol. 2001;37:1069–76.

    Article  Google Scholar 

  56. Daniel WG, Mugge A, Martin RP, et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography. N Engl J Med. 1991;324:795–800.

    Article  CAS  Google Scholar 

  57. Habets J, Tanis W, Reitsma JB, et al. Are novel non-invasive imaging techniques needed in patients with suspected prosthetic heart valve endocarditis? A systematic review and meta-analysis. Eur Radiol. 2015;25:2125–33.

    Article  Google Scholar 

  58. Benjamin EJ, Plehn JF, D'Agostino RB, et al. Mitral annular calcification and the risk of stroke in an elderly cohort. N Engl J Med. 1992;327:374–9.

    Article  CAS  Google Scholar 

  59. Higgins J, Mayo J, Skarsgard P. Cardiac computed tomography facilitates operative planning in patients with mitral calcification. Ann Thorac Surg. 2013;95:e9–11.

    Article  Google Scholar 

  60. Budoff MJ, Takasu J, Katz R, et al. Reproducibility of CT measurements of aortic valve calcification, mitral annulus calcification, and aortic wall calcification in the multi-ethnic study of atherosclerosis. Acad Radiol. 2006;13:166–72.

    Article  Google Scholar 

  61. Amarenco P, Cohen A, Tzourio C, et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994;331:1474–9.

    Article  CAS  Google Scholar 

  62. The French Study of Aortic Plaques in Stroke Group. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med. 1996;334:1121–221.

    Google Scholar 

  63. Tunick PA, Rosenzweig BP, Katz ES, Freedberg RS, Perez JL, Kronzon I. High risk for vascular events in patients with protruding aortic atheromas: a prospective study. J Am Coll Cardiol. 1994;23:1085–90.

    Article  CAS  Google Scholar 

  64. Rana BS, Monaghan MJ, Ring L, Shapiro LS, Nihoyannopoulos P. The pivotal role of echocardiography in cardiac sources of embolism. Eur J Echocardiogr. 2011;12:25–31.

    Article  Google Scholar 

  65. Pepi M, Evangelista A, Nihoyannopoulos P, et al. European Association of Echocardiography. Recommendations for echocardiography use in the diagnosis and management of cardiac sources of embolism: European Association of Echocardiography. Eur J Echocardiogr. 2010;11:461–76.

    Google Scholar 

  66. Ko Y, Park JH, Yang MH, et al. Significance of aortic atherosclerotic disease in possibly embolic stroke: 64-multidetector row computed tomography study. J Neurol. 2010;257:699–705.

    Article  Google Scholar 

  67. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O'Gara P, et al. ACCF/SCCTA/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American college of cardiology foundation appropriate use criteria task force, the society of cardiovascular computed tomography, the American college of radiology, the American heart association, the American society of echocardiography, the American society of nuclear cardiology, the north American society for cardiovascular imaging, the society for cardiovascular angiography and interventions, and the society for cardiovascular magnetic resonance. J Am Coll Cardiol. 2010;56:1864–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Humana Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hur, J., Choi, B.W. (2019). Ischemic Stroke: The Role of Cardiac CT. In: Schoepf, U. (eds) CT of the Heart. Contemporary Medical Imaging. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-237-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-237-7_49

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-236-0

  • Online ISBN: 978-1-60327-237-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics