Skip to main content

Platelets in Arterial Thrombosis

  • Chapter
  • First Online:
Antithrombotic Drug Therapy in Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

The central role of the platelet in thrombus formation has been well established. Whereas thrombus formation in some situations may be protective, it can be devastating in others such as in acute coronary syndromes. An understanding of the mechanisms and the molecules involved in platelet-mediated thrombosis is essential in order to be able to devise antiplatelet regimens that may improve patient outcomes and to develop future generations of antithrombotic drugs. This chapter provides a brief summary of the molecules and mechanisms which regulate platelet adhesion and aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcus AJ, Safier LB. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J. 1993;7:516–522.

    PubMed  CAS  Google Scholar 

  2. Diacovo TG, Puri KD, Warnock A, Springer TA, Von Andrian UH. Platelet-mediated lymphocyte delivery to high endothelial venules. Science. 1996;273:252–255.

    Article  PubMed  CAS  Google Scholar 

  3. Diacovo TG, Roth SJ, Buccola JM, Bainton DF, Springer TA. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the β2 integrin CD11b/CD18. Blood. 1996;88:146–157.

    PubMed  CAS  Google Scholar 

  4. Coller BS. Binding of abciximab to αVβ3 and activated αMβ2 receptors: with a review of platelet-leukocyte interactions. Thromb Haemost. 1999;82:326–336.

    PubMed  CAS  Google Scholar 

  5. Andrews RK, Gardiner EE, Shen Y, Whisstock JC, Berndt MC. Glycoprotein Ib-IX-V. Int J Biochem Cell Biol. 2003;35:1170–1174.

    Article  PubMed  CAS  Google Scholar 

  6. Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost. 2001;86:178–188.

    PubMed  CAS  Google Scholar 

  7. Luo SZ, Mo X, Afshar-Kharghan V, Srinivasan S, Lopez JA, Li R. Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood. 2007;109:603–609.

    Article  PubMed  CAS  Google Scholar 

  8. Sixma JJ, van Zanten GH, Saelman EUM, Verkleij M, Lankhof H, Nieuwenhuis HK, et al. Platelet adhesion to collagen. Thromb Haemost. 1995;74:454–459.

    PubMed  CAS  Google Scholar 

  9. Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interaction. J Thromb Haemost. 2003;1:1335–1342.

    Article  PubMed  CAS  Google Scholar 

  10. Ruggeri ZM. Role of von Willebrand factor in platelet thrombus formation. Ann Med. 2000;32(Suppl 1):2–9.

    PubMed  CAS  Google Scholar 

  11. Sakariassen KS, Aarts PAMM, de Groot PG, Houdijk PM, Sixma JJ. A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J Lab Clin Med. 1983;102:522–535.

    PubMed  CAS  Google Scholar 

  12. Lundblad RL, White GC. The interaction of thrombin with blood platelets. Platelets. 2005;16:373–385.

    Article  PubMed  CAS  Google Scholar 

  13. Simon DI, Chen ZP, Xu H, Li CQ, Dong JF, McIntire LV, et al. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med. 2000;192:193–204.

    Article  PubMed  CAS  Google Scholar 

  14. Gu M, Xi X, Englund GD, Berndt MC, Du X. Analysis of the roles of 14-3-3 in the platelet glycoprotein Ib-IX-mediated activation of integrin alpha(IIb)beta(3) using a reconstituted mammalian cell expression model. Cell Biol. 1999;147:1085–1096.

    Article  CAS  Google Scholar 

  15. Ozaki Y, Asazuma N, Suzuki-Inoue K, Berndt MC. Platelet GPIb-IX-V-dependent signaling. J Thromb Haemost. 2005;3:1745–1751.

    Article  PubMed  CAS  Google Scholar 

  16. Du X. Signaling and regulation of the platelet glycoprotein Ib-IX-V complex. Curr Opin Hematol. 2007;14:262–269.

    Article  PubMed  CAS  Google Scholar 

  17. Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003;102:449–461.

    Article  PubMed  CAS  Google Scholar 

  18. Fox JEB. Identification of actin-binding protein as the protein linking the membrane skeleton to glycoproteins on platelet plasma membranes. J Biol Chem. 1985;260:11970.

    PubMed  CAS  Google Scholar 

  19. Nurden AT. Inherited abnormalities of platelets. Thromb Haemost. 1999;82:468–480.

    PubMed  CAS  Google Scholar 

  20. Lopez JA, Chung DW, Fujikawa K, Hagen FS, Davie EW, Roth GJ. The alpha and beta chains of human platelet glycoprotein Ib are both transmembrane proteins containing a leucine-rich amino acid sequence. Proc Natl Acad Sci USA. 1988;85:2135–2139.

    Article  PubMed  CAS  Google Scholar 

  21. Bodnar RJ, Gu M, Li Z, Englund GD, Du X. The cytoplasmic domain of the platelet glycoprotein Ibalpha is phosphorylated at serine 609. J Biol Chem. 1999;274:33474–33479.

    Article  PubMed  CAS  Google Scholar 

  22. Lanza F, de La SC, Baas MJ, Schwartz A, Boval B, Cazenave JP, et al. A Leu7Pro mutation in the signal peptide of platelet glycoprotein (GP)IX in a case of Bernard-Soulier syndrome abolishes surface expression of the GPIb-V-IX complex. Br J Haematol. 2002;118:260–266.

    Article  PubMed  CAS  Google Scholar 

  23. Poujol C, Ramakrishnan V, Deguzman F, Nurden AT, Phillips DR, Nurden P. Ultrastructural analysis of megakaryocytes in GPV knockout mice. Thromb Haemost. 2000;84:312–318.

    PubMed  CAS  Google Scholar 

  24. Ni H, Ramakrishnan V, Ruggeri ZM, Papalia JM, Phillips DR, Wagner DD. Increased thrombogenesis and embolus formation in mice lacking glycoprotein V. Blood. 2001;98:368–373.

    Article  PubMed  CAS  Google Scholar 

  25. Lanza F, Morales M, de La SC, Cazenave JP, Clemetson KJ, Shimomura T, et al. Cloning and characterization of the gene encoding the human platelet glycoprotein V. A member of the leucine-rich glycoprotein family cleaved during thrombin-induced platelet activation. J Biol Chem. 1993;268:20801–20807.

    PubMed  CAS  Google Scholar 

  26. Kahn ML, Diacovo TG, Bainton DF, Lanza F, Trejo J, Coughlin SR. Glycoprotein V-deficient platelets have undiminished thrombin responsiveness and Do not exhibit a Bernard-Soulier phenotype. Blood. 1999;94:4112–4121.

    PubMed  CAS  Google Scholar 

  27. Moroi M, Jung SM. Platelet glycoprotein VI: its structure and function. Thromb Res. 2004;114:221–233.

    Article  PubMed  CAS  Google Scholar 

  28. Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28:403–412.

    Article  PubMed  CAS  Google Scholar 

  29. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14:325–330.

    Article  PubMed  CAS  Google Scholar 

  30. Kasirer-Friede A, Kahn ML, Shattil SJ. Platelet integrins and immunoreceptors. Immunol Rev. 2007;218:247–264.

    Article  PubMed  CAS  Google Scholar 

  31. Watson SP, Auger JM, McCarty OJ, Pearce AC. GPVI and integrin alphaIIb beta3 signaling in platelets. J Thromb Haemost. 2005;3:1752–1762.

    Article  PubMed  CAS  Google Scholar 

  32. Dickeson SK, Santoro SA. Ligand recognition by the I domain-containing integrins. Cell Mol Life Sci. 1998;54:556–566.

    Article  PubMed  CAS  Google Scholar 

  33. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin α2β1. Cell. 2000;101:47–56.

    Article  PubMed  CAS  Google Scholar 

  34. Smith C, Estavillo D, Emsley J, Bankston LA, Liddington RC, Cruz MA. Mapping the collagen-binding site in the I domain of the glycoprotein Ia/IIa (integrin alpha(2)beta(1)). J Biol Chem. 2000;275:4205–4209.

    Article  PubMed  CAS  Google Scholar 

  35. Dickeson SK, Walsh JJ, Santoro SA. Binding of the α2 integrin I domain to extracellular matrix ligands: structural and mechanistic differences between collagen and laminin binding. Cell Adhes Commun. 1998;5:273–281.

    Article  PubMed  CAS  Google Scholar 

  36. Nieuwenhuis HK, Akkerman JWN, Houdijk WPM, Sixma JJ. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature. 1985;318:470–472.

    Article  PubMed  CAS  Google Scholar 

  37. Chen H, Kahn ML. Reciprocal signaling by integrin and nonintegrin receptors during collagen activation of platelets. Mol Cell Biol. 2003;23:4764–4777.

    Article  PubMed  CAS  Google Scholar 

  38. Plow EF. Mechanisms of platelet adhesion. In: Lincoff AM, Topol EJ, editors. Contemporary cardiology: platelet glycoprotein IIb/IIIa inhibitors in cardiovascular disease. Totowa, NJ: Humana; 1999. p. 21–34.

    Google Scholar 

  39. Plow EF, Abrams CS. The molecular basis for platelet function. In: Hoffman R, Benz Jr EJ, Shattil SJ, Furie B, Cohen HJ, Silberstein LE, McGlave P, editors. Hematology: Basic Principles and Practice. 4th ed. Philadelphia, PA: Elsevier/Churchill Livingstone; 2005. p. 1881–1897.

    Google Scholar 

  40. Lawler J, Weinstein R, Hynes RO. Cell attachment to thrombospondin: the role of arg-gly-asp, calcium and integrin receptors. J Cell Biol. 1988;107:2351–2361.

    Article  PubMed  CAS  Google Scholar 

  41. Asch AS, Silbiger S, Heimer E, Nachman RL. Thrombospondin sequence motif (CSVTCG) is responsible for CD36 binding. Biochem Biophys Res Commun. 1992;182:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  42. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP. CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol. 1997;138:707–717.

    Article  PubMed  CAS  Google Scholar 

  43. Gaarder A, Jonsen J, Laland S, Hellem A, Owren PA. Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature. 1961;192:531–532.

    Article  PubMed  CAS  Google Scholar 

  44. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194:927–929.

    Article  PubMed  CAS  Google Scholar 

  45. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413–492.

    PubMed  CAS  Google Scholar 

  46. Leon C, Hechler B, Vial C, Leray C, Cazanave JP, Gachet C. The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett. 1997;402:26–30.

    Article  Google Scholar 

  47. Baurand A, Raboisson P, Freund M, Leon C, Cazenave JP, Bourguignon JJ, et al. Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist. Eur J Pharmacol. 2001;412:213–221.

    Article  PubMed  CAS  Google Scholar 

  48. Ayyanathan K, Webbs TE, Sandhu AK, Athwal RS, Barnard EA, Kunapuli SP. Cloning and chromosomal localization of the human P2Y1 purinoceptor. Biochem Biophys Res Commun. 1996;218:783–788.

    Article  PubMed  CAS  Google Scholar 

  49. Ayyanathan K, Naylor SL, Kunapuli SP. Structural characterization and fine chromosomal mapping of the human P2Y1 purinergic receptor gene (P2RY1). Somat Cell Mol Genet. 1996;22:419–424.

    Article  PubMed  CAS  Google Scholar 

  50. Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in G alpha(q)-deficient mice. Nature. 1997;389:183–186.

    Article  PubMed  CAS  Google Scholar 

  51. Jin J, Dasari VR, Sistare FD, Kunapuli SP. Distribution of P2Y receptor subtypes on haematopoietic cells. Br J Pharmacol. 1998;123:789–794.

    Article  PubMed  CAS  Google Scholar 

  52. Jin J, Quinton TM, Zhang J, Rittenhouse SE, Kunapuli SP. Adenosine diphosphate (ADP)-induced thromboxane A(2) generation in human platelets requires coordinated signaling through integrin alpha(IIb)beta(3) and ADP receptors. Blood. 2002;99:193–198.

    Article  PubMed  CAS  Google Scholar 

  53. Mangin P, Ohlmann P, Eckly A, Cazenave JP, Lanza F, Gachet C. The P2Y1 receptor plays an essential role in the platelet shape change induced by collagen when TxA2 formation is prevented. J Thromb Haemost. 2004;2:969–977.

    Article  PubMed  CAS  Google Scholar 

  54. Fabre JE, Nguyen M, Latour A, Keifer JA, Audoly LP, Coffman TM, et al. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice Nat. Nat Med. 1999;5:1199–1202.

    Article  PubMed  CAS  Google Scholar 

  55. Leon C, Freund M, Ravanat C, Baurand A, Cazenave JP, Gachet C. Key role of the P2Y(1) receptor in tissue factor-induced thrombin-dependent acute thromboembolism: studies in P2Y(1)-knockout mice and mice treated with a P2Y(1) antagonist. Circulation. 2001;103:718–723.

    Article  PubMed  CAS  Google Scholar 

  56. Lenain N, Freund M, Leon C, Cazenave JP, Gachet C. Inhibition of localized thrombosis in P2Y1-deficient mice and rodents treated with MRS2179, a P2Y1 receptor antagonist. J Thromb Haemost. 2003;1:1144–1149.

    Article  PubMed  CAS  Google Scholar 

  57. Ohlmann P, Laugwitz KL, Nurnberg B, Spicher K, Schultz G, Cazenave JP, et al. The human platelet ADP receptor activates Gi2 proteins. Biochem J. 1995;312(Pt 3):775–779.

    PubMed  CAS  Google Scholar 

  58. Hechler B, Eckly A, Ohlmann P, Cazenave JP, Gachet C. The P2Y1 receptor, necessary but not sufficient to support full ADP-induced platelet aggregation, is not the target of the drug clopidogrel. Br J Haematol. 1998;103:858–866.

    Article  PubMed  CAS  Google Scholar 

  59. Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, et al. Role of P2Y1 purinoceptor in ADP-induced platelet activation. FEBS Lett. 1998;422:291–295.

    Article  PubMed  CAS  Google Scholar 

  60. Jin J, Kunapuli SP. Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA. 1998;95:8070–8074.

    Article  PubMed  CAS  Google Scholar 

  61. Leon C, Ravanat C, Freund M, Cazenave JP, Gachet C. Differential involvement of the P2Y1 and P2Y12 receptors in platelet procoagulant activity. Arterioscler Thromb Vasc Biol. 2003;23:1941–1947.

    Article  PubMed  CAS  Google Scholar 

  62. Leon C, Alex M, Klocke A, Morgenstern E, Moosbauer C, Eckly A, et al. Platelet ADP receptors contribute to the initiation of intravascular coagulation Blood. 2004;103:594–600.

    CAS  Google Scholar 

  63. Foster CJ, Prosser DM, Agans JM, Zhai Y, Smith MD, Lachowicz JE, et al. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest. 2001;107: 1591–1598.

    Article  PubMed  CAS  Google Scholar 

  64. Andre P, Delaney SM, LaRocca T, Vincent D, Deguzman F, Jurek M, et al. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest. 2003;112:398–406.

    PubMed  CAS  Google Scholar 

  65. Remijn JA, Wu YP, Jeninga EH, IJsseldijk MJ, van Willigen G, de Groot PG, et al. Role of ADP receptor P2Y(12) in platelet adhesion and thrombus formation in flowing blood. Arterioscler Thromb Vasc Biol. 2002;22:686–691.

    Article  PubMed  CAS  Google Scholar 

  66. Gachet C. Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol. 2006;46:277–300.

    Article  PubMed  CAS  Google Scholar 

  67. Kauffenstein G, Hechler B, Cazenave JP, Gachet C. Adenine triphosphate nucleotides are antagonists at the P2Y receptor. J Thromb Haemost. 2004;2:1980–1988.

    Article  PubMed  CAS  Google Scholar 

  68. Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK. Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol. 2003;64:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  69. Bennett JS. Novel platelet inhibitors. Annu Rev Med. 2001;52:161–184.

    Article  PubMed  CAS  Google Scholar 

  70. Sugidachi A, Asai F, Yoneda K, Iwamura R, Ogawa T, Otsuguro K, et al. Antiplatelet action of R-99224, an active metabolite of a novel thienopyridine-type G(i)-linked P2T antagonist CS-747. Br J Pharmacol. 2001;132:47–54.

    Article  PubMed  CAS  Google Scholar 

  71. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84:891–896.

    PubMed  CAS  Google Scholar 

  72. Ding Z, Kim S, Dorsam RT, Jin J, Kunapuli SP. Inactivation of the human P2Y12 receptor by thiol reagents requires interaction with both extracellular cysteine residues, Cys17 and Cys270. Blood. 2003;101:3908–3914.

    Article  PubMed  CAS  Google Scholar 

  73. Mahaut-Smith MP, Tolhurst G, Evans RJ. Emerging roles for P2X1 receptors in platelet activation. Platelets. 2004;15:131–144.

    Article  PubMed  CAS  Google Scholar 

  74. Rolf MG, Brearley CA, Mahaut-Smith MP. Platelet shape change evoked by selective activation of P2X1 purinoceptors with alpha, beta-methylene ATP. Thromb Haemost. 2001;85:303–308.

    PubMed  CAS  Google Scholar 

  75. Hechler B, Lenain N, Marchese P, Vial C, Heim V, Freund M, et al. A role of the fast ATP-gated P2X1 cation channel in thrombosis of small arteries in vivo. J Exp Med. 2003;198:661–667.

    Article  PubMed  CAS  Google Scholar 

  76. Oury C, Toth-Zsamboki E, Thys C, Tytgat J, Vermylen J, Hoylaerts MF. The ATP-gated P2X1 ion channel acts as a positive regulator of platelet responses to collagen. Thromb Haemost. 2001;86:1264–1271.

    PubMed  CAS  Google Scholar 

  77. Cattaneo M, Marchese P, Jacobson KA, Ruggeri Z. New insights into the role of P2X1 in platelet function. Haematologica. 2002;87:13–14.

    Google Scholar 

  78. Oury C, Kuijpers MJ, Toth-Zsamboki E, Bonnefoy A, Danloy S, Vreys I, et al. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood. 2003;101:3969–3976.

    Article  PubMed  CAS  Google Scholar 

  79. Paul BZ, Vilaire G, Kunapuli SP, Bennett JS. Concurrent signaling from Gαq- and Gαi-coupled pathways is essential for agonist-induced αVβ3 activation on human platelets. J Thromb Haemost. 2003;1:814–820.

    Article  PubMed  CAS  Google Scholar 

  80. Hechler B, Magnenat S, Zighetti ML, Kassack MU, Ullmann H, Cazenave JP, et al. Inhibition of platelet functions and thrombosis through selective or nonselective inhibition of the platelet P2 receptors with increasing doses of NF449 [4, 4’, 4’’, 4’’’-(carbonylbis(imino-5, 1, 3-benzenetriylbis-(carbonylimino)))t etrakis-benzene-1, 3-disulfonic acid octasodium salt]. J Pharmacol Exp Ther. 2005;314:232–243.

    Article  PubMed  CAS  Google Scholar 

  81. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–1068.

    Article  PubMed  CAS  Google Scholar 

  82. Trejo J, Altschuler Y, Fu HW, Mostov KE, Coughlin SR. Protease-activated receptor-1 down-regulation: a mutant HeLa cell line suggests novel requirements for PAR1 phosphorylation and recruitment to clathrin-coated pits. J Biol Chem. 2000;275:31255–31265.

    Article  PubMed  CAS  Google Scholar 

  83. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, et al. A dual thrombin receptor system for platelet activation. Nature. 1998;394:690–694.

    Article  PubMed  CAS  Google Scholar 

  84. Shapiro MJ, Weiss EJ, Faruqi TR, Coughlin SR. Protease-activated receptors 1 and 4 are shut off with distinct kinetics after activation by thrombin. J Biol Chem. 2000;275:25216–25221.

    Article  PubMed  CAS  Google Scholar 

  85. Brass LF. Thrombin and platelet activation. Chest. 2003;124:18S–25S.

    Article  PubMed  CAS  Google Scholar 

  86. Wu CC, Hwang TL, Liao CH, Kuo SC, Lee FY, Teng CM. The role of PAR4 in thrombin-induced thromboxane production in human platelets. Thromb Haemost. 2003;90:299–308.

    PubMed  CAS  Google Scholar 

  87. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100:3240–3244.

    Article  PubMed  CAS  Google Scholar 

  88. Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature. 2001;413:74–78.

    Article  PubMed  CAS  Google Scholar 

  89. Covic L, Singh C, Smith H, Kuliopulos A. Role of the PAR4 thrombin receptor in stabilizing platelet-platelet aggregates as revealed by a patient with Hermansky-Pudlak syndrome. Thromb Haemost. 2002;87:722–727.

    PubMed  CAS  Google Scholar 

  90. Brass LF, Vassallo RR Jr, Belmonte E, Ahuja M, Cichowski K, Hoxie JA. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J Biol Chem. 1992;267:13795–13798.

    PubMed  CAS  Google Scholar 

  91. Cook JJ, Sitko GR, Bednar B, Condra C, Mellott MJ, Feng DM, et al. An antibody against the exosite of the cloned thrombin receptor inhibits experimental arterial thrombosis in the African green monkey. Circulation. 1995;91:2961–2971.

    Article  PubMed  CAS  Google Scholar 

  92. Derian CK, Damiano BP, Addo MF, Darrow AL, D’Andrea MR, Nedelman M, et al. Blockade of the thrombin receptor protease-activated receptor-1 with a small-molecule antagonist prevents thrombus formation and vascular occlusion in nonhuman primates. J Pharmacol Exp Ther. 2003;304:855–861.

    Article  PubMed  CAS  Google Scholar 

  93. Covic L, Misra M, Badar J, Singh C, Kuliopulos A. Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med. 2002;8:1161–1165.

    Article  PubMed  CAS  Google Scholar 

  94. Leger AJ, Jacques SL, Badar J, Kaneider NC, Derian CK, Andrade-Gordon P, et al. Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis. Circulation. 2006;113:1244–1254.

    Article  PubMed  CAS  Google Scholar 

  95. Wu CC, Teng CM. Comparison of the effects of PAR1 antagonists, PAR4 antagonists, and their combinations on thrombin-induced human platelet activation. Eur J Pharmacol. 2006;546:142–147.

    Article  PubMed  CAS  Google Scholar 

  96. Shankar H, Kahner B, Kunapuli SP. G-protein dependent platelet signaling – perspectives for therapy. Curr Drug Targets. 2006;7:1253–1263.

    Article  PubMed  CAS  Google Scholar 

  97. Murugappan S, Shankar H, Kunapuli SP. Platelet receptors for adenine nucleotides and thromboxane A2. Semin Thromb Hemost. 2004;30:411–418.

    Article  PubMed  CAS  Google Scholar 

  98. Huang JS, Ramamurthy SK, Lin X, Le Breton GC. Cell signalling through thromboxane A2 receptors. Cell Signal. 2004;16:521–533.

    Article  PubMed  CAS  Google Scholar 

  99. Dogne JM, Hanson J, de Leval X, Pratico D, Pace-Asciak CR, Drion P, et al. From the design to the clinical application of thromboxane modulators. Curr Pharm Des. 2006;12:903–923.

    Article  PubMed  CAS  Google Scholar 

  100. Plow EF, Byzova T. The biology of glycoprotein IIb-IIIa. Coron Artery Dis. 1999;10:547–551.

    Article  PubMed  CAS  Google Scholar 

  101. Plow EF, Shattil SJ. Integrin αIIbβ3 and platelet aggregation. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, editors. Hemostasis and thrombosis: basic principles and clinical practice. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2001. p. 479–491.

    Google Scholar 

  102. Bennett JS. Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest. 2005;115:3363–3369.

    Article  PubMed  CAS  Google Scholar 

  103. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000;275:21785–21788.

    Article  PubMed  CAS  Google Scholar 

  104. Hato T, Ginsberg MH, Shattil SJ. Integrin αIIbβ3. In: Michelson AD, editor. Platelets. San Diego, CA: Academic; 2002. p. 105–116.

    Google Scholar 

  105. Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 2004;104:1606–1615.

    Article  PubMed  CAS  Google Scholar 

  106. Heidenreich R, Eisman R, Surrey S, Delgrosso K, Bennett JS, Schwartz E, et al. Organization of the gene for platelet glycoprotein IIb. Biochemistry. 1990;29:1232–1244.

    Article  PubMed  CAS  Google Scholar 

  107. Fitzgerald LA, Steiner B, Rall SCJ, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Identity with platelet glycoprotein IIIa and similarity to “integrin”. J Biol Chem. 1987;262:3936–3939.

    PubMed  CAS  Google Scholar 

  108. Zimrin AB, Gidwitz S, Lord S, Schwartz E, Bennett JS, White GC II, et al. The genomic organization of platelet glycoprotein IIIa. J Biol Chem. 1990;265:8590–8595.

    PubMed  CAS  Google Scholar 

  109. Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science. 2001;294:339–345.

    Article  PubMed  CAS  Google Scholar 

  110. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science. 2002;296:151–155.

    Article  PubMed  CAS  Google Scholar 

  111. Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 2004;432:59–67.

    Article  PubMed  CAS  Google Scholar 

  112. Xiong JP, Stehle T, Goodman SL, Arnaout MA. Integrins, cations and ligands: making the connection. J Thromb Haemost. 2003;7:1642–1654.

    Article  Google Scholar 

  113. Marguerie GA, Plow EF, Edgington TS. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem. 1979;254:5357–5363.

    PubMed  CAS  Google Scholar 

  114. Bennett JS, Vilaire G. Exposure of platelet fibrinogen receptors by ADP and epinephrine. J Clin Invest. 1979;64:1393–1401.

    Article  PubMed  CAS  Google Scholar 

  115. Marguerie GA, Plow EF. The fibrinogen dependent pathway of platelet aggregation. Ann NY Acad Sci. 1983;408:556–567.

    Article  PubMed  CAS  Google Scholar 

  116. Ginsberg MH, Du X, Plow EF. Inside-out integrin signaling. Curr Opin Cell Biol. 1992;4:766.

    Article  PubMed  CAS  Google Scholar 

  117. Vinogradova O, Velyvis A, Velyviene A, Hu B, Haas TA, Plow EF, et al. A structural mechanism of integrin αIIbβ3 “inside-out” activation as regulated by its cytoplasmic face. Cell. 2002;110:587–597.

    Article  PubMed  CAS  Google Scholar 

  118. Ma YQ, Qin J, Plow EF. Platelet integrin αIIbβ3 : activation mechanisms. J Thromb Haemost. 2007;5:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  119. Partridge AW, Liu S, Kim S, Bowie JU, Ginsberg MH. Transmembrane domain helix packing stabilizes integrin alphaIIbbeta3 in the low affinity state. J Biol Chem. 2005;280:7294–7300.

    Article  PubMed  CAS  Google Scholar 

  120. Luo BH, Carman CV, Takagi J, Springer TA. Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering. Proc Natl Acad Sci USA. 2005;102:3679–3684.

    Article  PubMed  CAS  Google Scholar 

  121. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110:599–611.

    Article  PubMed  CAS  Google Scholar 

  122. Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 2002;31:485–516.

    Article  PubMed  CAS  Google Scholar 

  123. Shattil SJ. Signaling through platelet integrin alpha IIb beta 3: inside-out, outside-in, and sideways. Thromb Haemost. 1999;82:318–325.

    PubMed  CAS  Google Scholar 

  124. Phillips DR, Nannizzi-Alaimo L, Prasad KS. Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thromb Haemost. 2001;86:246–258.

    PubMed  CAS  Google Scholar 

  125. Maree AO, Jneid H, Palacios IF, Rosenfield K, MacRae CA, Fitzgerald DJ. Growth arrest specific gene (GAS) 6 modulates platelet thrombus formation and vascular wall homeostasis and represents an attractive drug target. Curr Pharm Des. 2007;13:2656–2661.

    Article  PubMed  CAS  Google Scholar 

  126. Gould WR, Baxi SM, Schroeder R, Peng YW, Leadley RJ, Peterson JT, et al. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J Thromb Haemost. 2005;3:733–741.

    Article  PubMed  CAS  Google Scholar 

  127. Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F, et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med. 2001;7:215–221.

    Article  PubMed  CAS  Google Scholar 

  128. Brass LF, Zhu L, Stalker TJ. Minding the gaps to promote thrombus growth and stability. J Clin Invest. 2005;115:3385–3392.

    Article  PubMed  CAS  Google Scholar 

  129. Brass LF, Jiang H, Wu J, Stalker TJ, Zhu L. Contact-dependent signaling events that promote thrombus formation. Blood Cells Mol Dis. 2006;36:157–161.

    Article  PubMed  CAS  Google Scholar 

  130. Tadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda JM, et al. Talin binding to integrin β tails: a final common step in integrin activation. Science. 2003;302:103–106.

    Article  PubMed  CAS  Google Scholar 

  131. Ratnikov BI, Partridge AW, Ginsberg MH. Integrin activation by talin. J Thromb Haemost. 2005;3:1783–1790.

    Article  PubMed  CAS  Google Scholar 

  132. Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, et al. Structural basis of integrin activation by talin. Cell. 2007;128:171–182.

    Article  PubMed  CAS  Google Scholar 

  133. Shi X, Ma YQ, Tu Y, Chen K, Wu S, Fukuda K, et al. The mitogen inducible gene-2 (Mig-2)-integrin interaction strengthens cell-matrix adhesion and modulates cell motility. J Biol Chem. 2007;282:20455–20466.

    Article  PubMed  CAS  Google Scholar 

  134. Ma YQ, Qin J, Wu C, Plow EF. Kindlin-2 (Mig-2): a co-activator of beta3-integrins. J Cell Biol. 2008;181(3):439–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward F. Plow PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Plow, E.F., Kelly, P. (2010). Platelets in Arterial Thrombosis. In: Askari, A., Lincoff, A. (eds) Antithrombotic Drug Therapy in Cardiovascular Disease. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-235-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-235-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-234-6

  • Online ISBN: 978-1-60327-235-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics