Skip to main content

Stem Cells, Hypoxia and Hypoxia-Inducible Factors

  • Chapter
Regulatory Networks in Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Oxygen is a critical environmental factor that regulates the fate of stem cells. In this review, our aims are twofold: (i) to consider the contribution of oxygen tension to the environmental niches in which stem cells and their progeny find themselves and which have a role in determining their fate, and (ii) to define the regulatory networks that control the response of stem/progenitor cells to hypoxia, particularly those that affect early embryonic stem cell specification and hematopoietic stem cell development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okazaki K, Maltepe E. Oxygen, epigenetics and stem cell fate. Regen Med. 2006;1:71–83.

    PubMed  CAS  Google Scholar 

  2. Semenza GL. Life with oxygen. Science. 2007;318:62–4.

    PubMed  CAS  Google Scholar 

  3. Watt SM, Smythe J, Fox A, et al. Blueprint for the response of blood and bone marrow derived stem cells and their progeny to hypoxia. In: Habib N et al. editors. Stem cell repair and regeneration. London, UK: Imperial College Press, 2007. pp. 61–84.

    Google Scholar 

  4. Patiar S, Harris AL. Role of hypoxia-inducible factor-1alpha as a cancer therapy target. Endocr Relat Cancer. 2006;13 Suppl 1: S61–75.

    PubMed  CAS  Google Scholar 

  5. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007;17:71–7.

    PubMed  CAS  Google Scholar 

  6. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    PubMed  CAS  Google Scholar 

  7. Walmsley SR, McGovern NN, Whyte MK, et al. The HIF/VHL pathway: from oxygen sensing to innate immunity. Am J Respir Cell Mol Biol. 2008;38:251–5.

    PubMed  CAS  Google Scholar 

  8. Webster WS, Abela D. The effect of hypoxia in development. Birth Defects Res C Embryo Today. 2007;81:215–28.

    PubMed  CAS  Google Scholar 

  9. Mitchell JA, Yochim JM. Intrauterine oxygen tension during the estrous cycle in the rat: its relation to uterine respiration and vascular activity. Endocrinology. 1968;83:701–5.

    PubMed  CAS  Google Scholar 

  10. Yochim JM, Mitchell JA. Intrauterine oxygen tension in the rat during progestation: its possible relation to carbohydrate metabolism and the regulation of nidation. Endocrinology. 1968;83:706–13.

    PubMed  CAS  Google Scholar 

  11. Rodesch F, Simon P, Donner C, et al. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol. 1992;80:283–5.

    PubMed  CAS  Google Scholar 

  12. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    PubMed  CAS  Google Scholar 

  13. Kaufman DL, Mitchell JA. Intrauterine oxygen tension during the oestrous cycle in the hamster: patterns of change. Comp Biochem Physiol Comp Physiol. 1994;107:673–8.

    PubMed  CAS  Google Scholar 

  14. Jaffe R, Jauniaux E, Hustin J, et al. Maternal circulation in the first-trimester human placenta-myth or reality? Am J Obstet Gynecol. 1997;176:695–705.

    PubMed  CAS  Google Scholar 

  15. Van Blerkom J, Antczak M, Schrader R, et al. The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod. 1997;12:1047–55.

    PubMed  Google Scholar 

  16. Burton GJ, Jauniaux E, Watson AL, et al. Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: the Boyd collection revisited. Am J Obstet Gynecol. 1999;181:718–24.

    PubMed  CAS  Google Scholar 

  17. Rossant J. Stem cells from the mammalian blastocyst. Stem Cells. 2001;19:477–82.

    PubMed  CAS  Google Scholar 

  18. James JL, Stone PR, Chamley LW, et al. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update. 2006;12:137–44.

    PubMed  CAS  Google Scholar 

  19. Torres-Padilla ME, Parfitt DE, Kouzarides T, et al. Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature. 2007;445:214–8.

    PubMed  CAS  Google Scholar 

  20. Piotrowska K, Zernicka-Goetz M. Role for sperm in spatial patterning of the early mouse embryo. Nature. 2001;409:517–21.

    PubMed  CAS  Google Scholar 

  21. Plusa B, Hadjantonakis AK, Gray D, et al. The first cleavage of the mouse zygote predicts the blastocyst axis. Nature. 2005;434: 391–5.

    PubMed  CAS  Google Scholar 

  22. Morriss GM, New DA. Effect of oxygen concentration on morphogenesis of cranial neural folds and neural crest in cultured rat embryos. J Embryol Exp Morphol. 1979;54:17–35.

    PubMed  CAS  Google Scholar 

  23. Pabon JE, Findley WE, Gibbons WE, et al. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril. 1989;51:896–900.

    PubMed  Google Scholar 

  24. Thompson JG, Simpson AC, Pugh PA, et al. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.

    PubMed  CAS  Google Scholar 

  25. Umaoka Y, Noda Y, Narimoto K, et al. Effects of oxygen toxicity on early development of mouse embryos. Mol Reprod Dev. 1992;31:28–33.

    PubMed  CAS  Google Scholar 

  26. Li J, Foote RH. Culture of rabbit zygotes into blastocysts in protein-free medium with one to twenty per cent oxygen. J Reprod Fertil. 1993;98:163–7.

    PubMed  CAS  Google Scholar 

  27. Eppig JJ, Wigglesworth K. Factors affecting the developmental competence of mouse oocytes grown in vitro: oxygen concentration. Mol Reprod Dev. 1995;42:447–56.

    PubMed  CAS  Google Scholar 

  28. Bernardi ML, Flechon JE, Delouis C. Influence of culture system and oxygen tension on the development of ovine zygotes matured and fertilized in vitro. J Reprod Fertil. 1996;106:161–7.

    PubMed  CAS  Google Scholar 

  29. Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15 Suppl 2:199–206.

    PubMed  Google Scholar 

  30. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102:4783–8.

    PubMed  CAS  Google Scholar 

  31. Michalska AE, Pegah J, Tellis I, et al. Effect of neurotrophins and low oxygen on cloning efficiency of human embryonic stem cells. 5th ISSCR Annual Meeting, Cairns, Australia. 2007;Abstract 292:142.

    Google Scholar 

  32. Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53–4.

    PubMed  CAS  Google Scholar 

  33. Jauniaux E, Watson A, Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks gestation. Am J Obstet Gynecol. 2001;184:998–1003.

    PubMed  CAS  Google Scholar 

  34. Aplin JD, Kimber SJ. Trophoblast-uterine interactions at implantation. Reprod Biol Endocrinol. 2004;2:48.

    PubMed  Google Scholar 

  35. Samokhvalov IM, Samokhvalova NI, Nishikawa S. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature. 2007;446:1056–61.

    PubMed  CAS  Google Scholar 

  36. Tavian M, Peault B. Embryonic development of the human hematopoietic system. Int J Dev Biol. 2005;49:243–50.

    PubMed  CAS  Google Scholar 

  37. Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol. 2007;25:745–85.

    PubMed  CAS  Google Scholar 

  38. Bloom W, Bartelmez GW. Hematopoiesis in young human embryos. Am J Anat. 1940;67:21–53.

    Google Scholar 

  39. Fukuda T. Undifferentiated mononuclear cell in human embryonic liver; presumptive hematopoietic stem cell. Virchows Arch B Cell Pathol. 1973;14:31–4.

    PubMed  CAS  Google Scholar 

  40. Tavassoli M, Yoffey JM. Bone marrow structure and function. New York: Alan R Liss Press Inc.; 1983.

    Google Scholar 

  41. Moore MA, Metcalf D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol. 1970;18:279–96.

    PubMed  CAS  Google Scholar 

  42. Zambidis ET, Sinka L, Tavian M, et al. Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells. Ann N Y Acad Sci. 2007;1106:223–32.

    PubMed  CAS  Google Scholar 

  43. Kumaravelu P, Hook L, Morrison AM, et al. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development. 2002;129:4891–9.

    PubMed  CAS  Google Scholar 

  44. Zeigler BM, Sugiyama D, Chen M, et al. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development. 2006;133:4183–92.

    PubMed  CAS  Google Scholar 

  45. Gekas C, Dieterlen-Livre F, Orkin SH, et al. The placenta is a niche for hematopoietic stem cells. Dev Cell. 2005;8:365–75.

    PubMed  CAS  Google Scholar 

  46. Yokota T, Huang J, Tavian M, et al. Tracing the first waves of lymphopoiesis in mice. Development. 2006;133:2041–51.

    PubMed  CAS  Google Scholar 

  47. Charbord P, Tavian M, Humeau L, et al. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood. 1996;87: 4109–19.

    PubMed  CAS  Google Scholar 

  48. Guillot PV, Donoghue O, Kurata H, et al. Fetal stem cells: betwixt and between. Semin Reprod Med. 2006;24:340–7.

    PubMed  CAS  Google Scholar 

  49. Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–402.

    PubMed  CAS  Google Scholar 

  50. In’t Anker PS, Scherjon SA, Kleiburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102:1548–9.

    Google Scholar 

  51. De Coppi P, Bartsch G, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100–6.

    PubMed  Google Scholar 

  52. Towler DA. Vascular biology and bone formation: hints from HIF. J Clin Invest. 2007;117:1477–80.

    PubMed  CAS  Google Scholar 

  53. Watt SM, Forde SP. The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation. Will CXCR4 contagonists contribute to the treatment of blood disorders. Vox Sang. 2008;94:18–32.

    PubMed  CAS  Google Scholar 

  54. Trentin JJ. Hemopoietic microenvironments. Transplant Proc. 1978;10:77–82.

    PubMed  CAS  Google Scholar 

  55. Bizzozero GN. Sulla funzione ematopoietici del midollo delle oss. R C R 1st Lomb Sci Lett. 1868;2:815–8.

    Google Scholar 

  56. Bowie MB, McKnight KD, Kent DG, et al. Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest. 2006;116:2808–16.

    PubMed  CAS  Google Scholar 

  57. Kikuchi K, Kondo M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc Natl Acad Sci U S A. 2006;103: 17852–7.

    PubMed  CAS  Google Scholar 

  58. Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6:93–106.

    PubMed  CAS  Google Scholar 

  59. Scadden DT. The stem cell niche in health and leukemic disease. Best Pract Res Clin Haematol. 2007;20:19–27.

    PubMed  CAS  Google Scholar 

  60. Maloney MA, Patt HM. Origin in repopulating cells after localized bone marrow depletion. Science. 1968;165:71–3.

    PubMed  CAS  Google Scholar 

  61. Kiel MJ, Morrison SJ. Maintaining hematopoietic stem cells in the vascular niche. Immunity. 2006;25:862–4.

    PubMed  CAS  Google Scholar 

  62. Haylock DN, Williams B, Johnston HM, et al. Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells. 2007;25:1062–69.

    PubMed  CAS  Google Scholar 

  63. Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.

    PubMed  CAS  Google Scholar 

  64. Kokovay E, Temple S. Taking neural crest stem cells to new heights. Cell. 2007;131:234–6.

    PubMed  CAS  Google Scholar 

  65. Amarilio R, Viukov SV, Sharir A, et al. HIF1-\(\alpha\) regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development. 2007;134:3917–28.

    PubMed  CAS  Google Scholar 

  66. Chow DC, Wenning LA, Miller WM, et al. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J. 2001;81:685–96.

    PubMed  CAS  Google Scholar 

  67. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    PubMed  CAS  Google Scholar 

  68. Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338:617–26.

    PubMed  CAS  Google Scholar 

  69. Semenza GL. Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol. 2006;91:803–6.

    PubMed  CAS  Google Scholar 

  70. Semenza GL. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE. 2007;2007(407):cm8.

    Google Scholar 

  71. Levesque JP, Winkler IG, Hendy J, et al. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1 alpha and vascular endothelial growth factor A in bone marrow. Stem Cells. 2007;25:1954–65.

    PubMed  CAS  Google Scholar 

  72. Kopp HG, Avecilla ST, Hooper AT, et al. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005;20:349–56.

    CAS  Google Scholar 

  73. Thomlinson, RH, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955;9:539–49.

    PubMed  CAS  Google Scholar 

  74. Harrison JS, Rameshwar P, Chang V, et al. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99:394.

    PubMed  CAS  Google Scholar 

  75. Skouby AR. Haematologic adaptation in patients with chronic bronchitis and pulmonary insufficiency. Acta Med Scand. 1976;199:185–90.

    PubMed  CAS  Google Scholar 

  76. Parmar K, Mauch P, Vergilio JA, et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104:5431–6.

    PubMed  CAS  Google Scholar 

  77. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110:3056–63.

    PubMed  CAS  Google Scholar 

  78. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431:997–1002.

    PubMed  CAS  Google Scholar 

  79. Tothova Z, Kollipara R, Huntly BJ, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell. 2007;128:325–39.

    PubMed  CAS  Google Scholar 

  80. Miyamoto K, Araki KY, Naka K, et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell. 2007;1:101–12.

    PubMed  CAS  Google Scholar 

  81. Winkler IG, Levesque JP. Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol. 2006;34:996–1009.

    PubMed  CAS  Google Scholar 

  82. Rochefort GY, Delorme B, Lopez A, et al. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006;24:2202–8.

    PubMed  CAS  Google Scholar 

  83. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10:858–64.

    PubMed  CAS  Google Scholar 

  84. Fox A, Smythe J, Fisher N, et al. Mobilization of endothelial progenitor cells into the circulation in burned patients. Br J Surg. 2008;95:244–51.

    PubMed  CAS  Google Scholar 

  85. Tepper OM, Capla JM, Galiano RD, et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005;105: 1068–77.

    PubMed  CAS  Google Scholar 

  86. Cipolleschi MG, Dello, Sbarba P, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells. Blood. 1993;82:2031–7.

    PubMed  CAS  Google Scholar 

  87. Ivanovic Z, Hermitte F, Brunet de la, Grange, P, et al. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells. 2004;22:716–24.

    PubMed  Google Scholar 

  88. Danet GH, Pan Y, Luongo JL, et al. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest. 2003;112:126–35.

    PubMed  CAS  Google Scholar 

  89. Martin-Rendon E, Hale SJ, Ryan D, et al. Transcriptional profiling of human cord blood CD133\(^{+}\) and cultured bone marrow mesenchymal stem cells in response to hypoxia. Stem Cells. 2007;25:1003–12.

    PubMed  CAS  Google Scholar 

  90. Hermitte F, Brunet de la Grange P, Belloc F, et al. Very low O\(_{2}\) concentration (0.1%) favors G\(_{0}\)return of dividing CD34\(^{+}\) cells. Stem Cells. 2006;24:65–73.

    PubMed  Google Scholar 

  91. Dao MA, Creer MH, Nolta JA, et al. Biology of umbilical cord blood progenitors in bone marrow niches. Blood. 2007;110: 74–81.

    PubMed  CAS  Google Scholar 

  92. Annabi B, Lee YT, Turcotte S, et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells. 2003;21:337–47.

    PubMed  CAS  Google Scholar 

  93. Fehrer C, Brunauer R, Laschober G, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell. 2007;6: 745–57.

    PubMed  CAS  Google Scholar 

  94. Hung SC, Pochampally RR, Hsu SC, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE. 2007;2:e416.

    PubMed  Google Scholar 

  95. Mole DR, Ratcliffe PJ. Cellular oxygen sensing in health and disease. Pediatr Nephrol. 2008;23:681–94.

    PubMed  Google Scholar 

  96. Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta. 2005;1755: 107–20.

    PubMed  CAS  Google Scholar 

  97. Gordan JD, Bertout JA, Hu CJ, et al. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11:335–47.

    PubMed  CAS  Google Scholar 

  98. Makino Y, Uenishi R, Okamoto K, et al. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells. J Biol Chem. 2007;282:14073–82.

    PubMed  CAS  Google Scholar 

  99. Maynard MA, Qi H, Chung J, et al. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 2003;278:11032–40.

    PubMed  CAS  Google Scholar 

  100. Jiang BH, Rue E, Wang GL, et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 1996;271:17771–8.

    PubMed  CAS  Google Scholar 

  101. Huang LE, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1998;95:7987–92.

    PubMed  CAS  Google Scholar 

  102. Jiang BH, Zheng JZ, Leung SW, et al. Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem. 1997;272:19253–60.

    PubMed  CAS  Google Scholar 

  103. Jain S, Maltepe E, Lu MM, et al. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev. 1998;73:117–23.

    PubMed  CAS  Google Scholar 

  104. Takahashi T, Sugishita Y, Nojiri T, et al. Cloning of hypoxia-inducible factor 1alpha cDNA from chick embryonic ventricular myocytes. Biochem Biophys Res Commun. 2001;281:1057–62.

    PubMed  CAS  Google Scholar 

  105. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82.

    PubMed  CAS  Google Scholar 

  106. Compernolle V, Brusselmans K, Acker T, et al. Loss of HIF-2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med. 2002;8:702–10.

    PubMed  CAS  Google Scholar 

  107. Wiesener MS, Jrgensen JS, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J. 2003;17:271–3.

    PubMed  CAS  Google Scholar 

  108. Makino Y, Cao R, Svensson K, et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 2001;414:550–4.

    PubMed  CAS  Google Scholar 

  109. Makino Y, Kanopka A, Wilson WJ, et al. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3alpha locus. J Biol Chem. 2002;277:32405–8.

    PubMed  CAS  Google Scholar 

  110. Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000;157:411–21.

    PubMed  CAS  Google Scholar 

  111. Stroka DM, Burkhardt T, Desbaillets I, et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 2001;15:2445–53.

    PubMed  CAS  Google Scholar 

  112. Ramirez-Bergeron DL, Runge A, Dahl KD, et al. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development. 2004;131:4623–34.

    PubMed  CAS  Google Scholar 

  113. Hu CJ, Iyer S, Sataur A, et al. Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. Mol Cell Biol. 2006;26:3514–26.

    PubMed  CAS  Google Scholar 

  114. Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17:3005–15.

    PubMed  CAS  Google Scholar 

  115. Iyer NV, Kotch LE, Agani F, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12:149–62.

    PubMed  CAS  Google Scholar 

  116. Cowden Dahl KD, Fryer BH, Mack FA, et al. Hypoxia-inducible factors 1alpha and 2alpha regulate trophoblast differentiation. Mol Cell Biol. 2005;25:10479–91.

    PubMed  CAS  Google Scholar 

  117. Scortegagna M, Morris MA, Oktay Y, et al. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood. 2003;102:1634–40.

    PubMed  CAS  Google Scholar 

  118. Scortegagna M, Ding K, Zhang Q, et al. HIF-2alpha regulates murine hematopoietic development in an erythropoietin-dependent manner. Blood 2005;105:3133–40.

    PubMed  CAS  Google Scholar 

  119. Gruber M, Hu CJ, Johnson RS, et al. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci U S A. 2007;104:2301–6.

    PubMed  CAS  Google Scholar 

  120. Yoon D, Pastore YD, Divoky V, et al. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem. 2006;281:25703–11.

    PubMed  CAS  Google Scholar 

  121. Wang Y, Wan C, Deng L, et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007;117:1616–26.

    PubMed  CAS  Google Scholar 

  122. Kojima H, Sitkovsky MV, Cascalho M. HIF-1 alpha deficiency perturbs T and B cell functions. Curr Pharm Des. 2003;9: 1827–32.

    PubMed  CAS  Google Scholar 

  123. Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.

    PubMed  CAS  Google Scholar 

  124. Kong T, Eltzschig HK, Karhausen J, et al. Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci U S A. 2004;101:10440–5.

    PubMed  CAS  Google Scholar 

  125. Walmsley SR, Cadwallader KA, Chilvers ER. The role of HIF-1alpha in myeloid cell inflammation. Trends Immunol. 2005;26:434–9.

    PubMed  CAS  Google Scholar 

  126. Covello KL, Simon MC, Keith B. Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res. 2005;65 2277–86.

    PubMed  CAS  Google Scholar 

  127. Covello KL, Kehler J, Yu H, et al. HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20:557–70.

    PubMed  CAS  Google Scholar 

  128. Dolwick KM, Swanson HI, Bradfield CA. In vitro analysis of Ah receptor domains involved in ligand-activated DNA recognition. Proc Natl Acad Sci U S A. 1993;90:8566–70.

    PubMed  CAS  Google Scholar 

  129. Moffett P, Reece M, Pelletier J. The murine Sim-2 gene product inhibits transcription by active repression and functional interference. Mol Cell Biol. 1997;17:4933–47.

    PubMed  CAS  Google Scholar 

  130. Maltepe E, Schmidt JV, Baunoch D, et al. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature. 1997;386:403–7.

    PubMed  CAS  Google Scholar 

  131. Kozak KR, Abbott B, Hankinson O. ARNT-deficient mice and placental differentiation. Dev Biol. 1997;191:297–305.

    PubMed  CAS  Google Scholar 

  132. Adelman DM, Maltepe E, Simon MC. Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev. 1999;13:2478–83.

    PubMed  CAS  Google Scholar 

  133. Adelman DM, Gertsenstein M, Nagy A, et al. Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev. 2000;14:3191–203.

    PubMed  CAS  Google Scholar 

  134. Masson N, Ratcliffe PJ. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J Cell Sci. 2003;116:3041–9.

    PubMed  CAS  Google Scholar 

  135. Masson N, Willam C, Maxwell PH, et al. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 2001;20:5197–206.

    PubMed  CAS  Google Scholar 

  136. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292:468–72.

    PubMed  CAS  Google Scholar 

  137. Ohh M, Takagi Y, Aso T, et al. Synthetic peptides define critical contacts between elongin C, elongin B, and the von Hippel-Lindau protein. J Clin Invest. 1999;104:1583–91.

    PubMed  CAS  Google Scholar 

  138. Berra E, Benizri E, Ginouvs A, et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003;22:4082–90.

    PubMed  CAS  Google Scholar 

  139. Metzen E, Berchner-Pfannschmidt U, Stengel P, et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci. 2003;116:1319–26.

    PubMed  CAS  Google Scholar 

  140. Stiehl DP, Wirthner R, Koeditz J, et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J Biol Chem. 2006;281:23482–91.

    PubMed  CAS  Google Scholar 

  141. Nakayama K, Frew IJ, Hagensen M, et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell. 2004;117:941–52.

    PubMed  CAS  Google Scholar 

  142. Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458–65.

    PubMed  CAS  Google Scholar 

  143. Takeda K, Ho VC, Takeda H, et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006;26:8336–46.

    PubMed  CAS  Google Scholar 

  144. Baek JH, Mahon PC, Oh J, et al. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell. 2005;17:503–12.

    PubMed  CAS  Google Scholar 

  145. Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111:709–20.

    PubMed  CAS  Google Scholar 

  146. Bilton R, Mazure N, Trottier E, et al. Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF. J Biol Chem. 2005;280:31132–40.

    PubMed  CAS  Google Scholar 

  147. Baek JH, Liu YV, McDonald KR, et al. Spermidine/spermine-N1-acetyltransferase 2 is an essential component of the ubiquitin ligase complex that regulates hypoxia-inducible factor 1alpha. J Biol Chem. 2007;282:23572–80.

    PubMed  CAS  Google Scholar 

  148. Li Z, Wang D, Messing EM, et al. VHL protein-interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF-1alpha. EMBO Rep. 2005;6:373–8.

    PubMed  CAS  Google Scholar 

  149. Bell EL, Chandel NS. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem. 2007;43:17–27.

    PubMed  CAS  Google Scholar 

  150. McDonough MA, Li V, Flashman E, et al. Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci U S A. 2006;103:9814–9.

    PubMed  CAS  Google Scholar 

  151. Pouyssgur J, Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol Chem. 2006;387:1337–46.

    Google Scholar 

  152. Ratcliffe PJ. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest. 2007;117:862–5.

    PubMed  CAS  Google Scholar 

  153. Wang V, Davis DA, Haque M, et al. Differential gene up-regulation by hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha in HEK293T cells. Cancer Res. 2005;65: 3299–306.

    PubMed  CAS  Google Scholar 

  154. Sharp FR, Bernaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 2004;5:437–48.

    PubMed  CAS  Google Scholar 

  155. Semenza GL. Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol. 2000;59:47–53.

    PubMed  CAS  Google Scholar 

  156. Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295:858–61.

    PubMed  CAS  Google Scholar 

  157. Hewitson KS, McNeill LA, Riordan MV, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002;277:26351–5.

    PubMed  CAS  Google Scholar 

  158. Sang N, Fang J, Srinivas V, et al. Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol Cell Biol. 2002;22:2984–92.

    PubMed  CAS  Google Scholar 

  159. Raval RR, Lau KW, Tran MG, et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol. 2005;25:5675–86.

    PubMed  CAS  Google Scholar 

  160. Lum JJ, Bui T, Gruber M, et al. The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 2007;21:1037–49.

    PubMed  CAS  Google Scholar 

  161. Lfstedt T, Fredlund E, Holmquist-Mengelbier L, et al. Hypoxia inducible factor-2alpha in cancer. Cell Cycle. 2007;6:919–26.

    Google Scholar 

  162. Gunaratnam L, Morley M, Franovic A, et al. Hypoxia inducible factor activates the transforming growth factor-alpha/epidermal growth factor receptor growth stimulatory pathway in VHL(-/-) renal cell carcinoma cells. J Biol Chem. 2003;278:44966–74.

    PubMed  CAS  Google Scholar 

  163. Hu CJ, Wang LY, Chodosh LA, et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23:9361–74.

    PubMed  CAS  Google Scholar 

  164. Wykoff CC, Sotiriou C, Cockman ME, et al. Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer. 2004;90: 1235–43.

    PubMed  CAS  Google Scholar 

  165. Elvidge GP, Glenny L, Appelhoff RJ, et al. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem. 2006;281:15215–26.

    PubMed  CAS  Google Scholar 

  166. Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 2002;62:3387–94.

    PubMed  CAS  Google Scholar 

  167. Baba M, Hirai S, Yamada-Okabe H, et al. Loss of von Hippel-Lindau protein causes cell density dependent deregulation of CyclinD1 expression through hypoxia-inducible factor. Oncogene. 2003;22:2728–38.

    PubMed  CAS  Google Scholar 

  168. Yuan Y, Shen H, Franklin DS, et al. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol. 2004;6:436–42.

    PubMed  CAS  Google Scholar 

  169. Cheng T, Rodrigues N, Dombkowski D, et al. Stem cell repopulation efficiency but not pool size is governed by p27(kip1). Nat Med. 2000;6:1235–40.

    PubMed  CAS  Google Scholar 

  170. Koshiji M, Kageyama Y, Pete EA, et al. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 2004;23:1949–56.

    PubMed  CAS  Google Scholar 

  171. Ulrich HD. SUMO teams up with ubiquitin to manage hypoxia. Cell. 2007;131:446–7.

    PubMed  CAS  Google Scholar 

  172. Welsh SJ, Bellamy WT, Briehl MM, et al. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1 alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 2002;62:5089–95.

    PubMed  CAS  Google Scholar 

  173. Bakker WJ, Harris IS, Mak TW. FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2. Mol Cell. 2007;28:941–53.

    PubMed  CAS  Google Scholar 

  174. Arden KC. FoxOs in tumor suppression and stem cell maintenance. Cell. 2007;128:235–7.

    PubMed  CAS  Google Scholar 

  175. Minet E, Mottet D, Michel G, et al. Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett. 1999;460:251–6.

    PubMed  CAS  Google Scholar 

  176. Liu YV, Semenza GL. RACK1 vs. HSP90: competition for HIF-1 alpha degradation vs. stabilization. Cell Cycle. 2007;6:656–9.

    PubMed  CAS  Google Scholar 

  177. Richard DE, Berra E, Gothi E, et al. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1. J Biol Chem. 1999;274:32631–7.

    PubMed  CAS  Google Scholar 

  178. Jin HO, An S, Lee HC, et al. Hypoxic condition- and high cell density-induced expression of Redd1 is regulated by activation of hypoxia-inducible factor-1alpha and Sp1 through the phosphatidylinositol 3-kinase/Akt signaling pathway. Cell Signal. 2007;19:1393–403.

    PubMed  CAS  Google Scholar 

  179. Sutton KM, Hayat S, Chau NM, et al. Selective inhibition of MEK1/2 reveals a differential requirement for ERK1/2 signalling in the regulation of HIF-1 in response to hypoxia and IGF-1. Oncogene. 2007;26:3920–29.

    PubMed  CAS  Google Scholar 

  180. Hara S, Hamada J, Kobayashi C, et al. Expression and characterization of hypoxia-inducible factor (HIF)-3alpha in human kidney: suppression of HIF-mediated gene expression by HIF-3alpha. Biochem Biophys Res Commun. 2001;287:808–13.

    PubMed  CAS  Google Scholar 

  181. Zhou Q, Chipperfield H, Melton DA, et al. A gene regulatory network in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104:16438–43.

    PubMed  CAS  Google Scholar 

  182. Swiers G, Patient R, Loose M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol. 2006;294:525–40.

    PubMed  CAS  Google Scholar 

  183. Soneji S, Huang S, Loose M, et al. Inference, validation, and dynamic modeling of transcription networks in multipotent hematopoietic cells. Ann N Y Acad Sci. 2007;1106:30–40.

    PubMed  CAS  Google Scholar 

  184. Ivanova NB, Dimos JT, Schaniel C, et al. A stem cell molecular signature. Science. 2002;298:601–4.

    PubMed  CAS  Google Scholar 

  185. Ramalho-Santos M, Yoon S, Matsuzaki Y, et al. ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298:597–600.

    PubMed  CAS  Google Scholar 

  186. Fortunel NO, Otu HH, Ng HH, et al. Comment on ‘Stemness: transcriptional profiling of embryonic and adult stem cells’ and ‘a stem cell molecular signature’. Science. 2003;302:393.

    PubMed  CAS  Google Scholar 

  187. Sperger JM, Chen X, Draper JS, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A. 2003;100:13350–5.

    PubMed  CAS  Google Scholar 

  188. Ivanova N, Dobrin R, Lu R, et al. Dissecting self-renewal in stem cells with RNA interference. Nature. 2006;442:533–8.

    PubMed  CAS  Google Scholar 

  189. Adewumi O, Aflatoonian B, hrlund-Richter L, et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 2007;25:803–16.

    PubMed  CAS  Google Scholar 

  190. Venezia TA, Merchant AA, Ramos CA, et al. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol. 2004;2:e301.

    PubMed  Google Scholar 

  191. Bruno L, Hoffmann R, McBlane F, et al. Molecular signatures of self-renewal, differentiation, and lineage choice in multipotential hemopoietic progenitor cells in vitro. Mol Cell Biol. 2004;24:741–56.

    PubMed  CAS  Google Scholar 

  192. Passegue E, Wagers AJ, Giuriato S, et al. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med. 2005;202:1599–611.

    PubMed  CAS  Google Scholar 

  193. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

    PubMed  CAS  Google Scholar 

  194. Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–40.

    PubMed  CAS  Google Scholar 

  195. Donaldson IJ, Chapman M, Kinston S, et al. Genome-wide identification of cis-regulatory sequences controlling blood and endothelial development. Hum Mol Genet. 2005;14:595–601.

    PubMed  CAS  Google Scholar 

  196. Chambers I. The molecular basis of pluripotency in mouse embryonic stem cells. Cloning Stem Cells. 2004;6:386–91.

    PubMed  CAS  Google Scholar 

  197. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.

    PubMed  CAS  Google Scholar 

  198. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.

    PubMed  CAS  Google Scholar 

  199. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;13:861–72.

    Google Scholar 

  200. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodelling and widespread tissue contribution. Cell Stem Cell. 2007;1:55–70.

    PubMed  CAS  Google Scholar 

  201. Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell. 2003;113:643–55.

    PubMed  CAS  Google Scholar 

  202. Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003;113:631–42.

    PubMed  CAS  Google Scholar 

  203. Pan G, Thomson JA. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42–9.

    PubMed  CAS  Google Scholar 

  204. Gustafsson MV, Zheng X, Pereira T, et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev Cell. 2005;9:617–28.

    PubMed  CAS  Google Scholar 

  205. Chiba S. Notch signaling in stem cell systems. Stem Cells. 2006;24:2437–47.

    PubMed  CAS  Google Scholar 

  206. Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev. 2007;17:52–9.

    PubMed  CAS  Google Scholar 

  207. Fiza UM, Arias AM. Cell and molecular biology of Notch. J Endocrinol. 2007;194:459–74.

    Google Scholar 

  208. Walsh J, Andrews PW. Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS 2003;111:197–210.

    PubMed  CAS  Google Scholar 

  209. Noggle SA, Weiler D, Condie BG. Notch signaling is inactive but inducible in human embryonic stem cells. Stem Cells. 2006;24:1646–53.

    PubMed  CAS  Google Scholar 

  210. Blank U, Karlsson G, Karlsson S. Signaling pathways governing stem cell fate. Blood. 2008;111:492–503.

    PubMed  CAS  Google Scholar 

  211. Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol. 2004;5:247–53.

    PubMed  CAS  Google Scholar 

  212. Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol. 2005;6:314–22.

    PubMed  CAS  Google Scholar 

  213. Karanu FN, Murdoch B, Gallacher L, et al. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med. 2000;192:1365–72.

    PubMed  CAS  Google Scholar 

  214. Karanu FN, Murdoch B, Miyabayashi T, et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood. 2001;97:1960–7.

    PubMed  CAS  Google Scholar 

  215. Karanu FN, Yuefei L, Gallacher L, et al. Differential response of primitive human CD34\(^{-}\) and CD34\(^{+}\) hematopoietic cells to the Notch ligand Jagged-1. Leukemia. 2003;17:1366–74.

    PubMed  CAS  Google Scholar 

  216. Stier S, Cheng T, Dombkowski D, et al. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 2002;99: 2369–78.

    PubMed  CAS  Google Scholar 

  217. Washburn T, Schweighoffer E, Gridley T, et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell. 1997;88:833–43.

    PubMed  CAS  Google Scholar 

  218. Robey E, Chang D, Itano A, et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell. 1996;87:483–92.

    PubMed  CAS  Google Scholar 

  219. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–61.

    PubMed  CAS  Google Scholar 

  220. Mancini SJ, Mantei N, Dumortier A, et al. Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood. 2005;105:2340–2.

    PubMed  CAS  Google Scholar 

  221. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997;11:3286–305.

    PubMed  CAS  Google Scholar 

  222. Willert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev. 2006;20:1394–404.

    PubMed  CAS  Google Scholar 

  223. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    PubMed  CAS  Google Scholar 

  224. Austin TW, Solar GP, Ziegler FC, et al. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood. 1997;89:3624–35.

    PubMed  CAS  Google Scholar 

  225. Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–52.

    PubMed  CAS  Google Scholar 

  226. Van Den Berg DJ, Sharma AK, Bruno E, Hoffman R. Role of members of the Wnt gene family in human hematopoiesis. Blood. 1998;92:3189–202.

    Google Scholar 

  227. Nikolova T, Wu M, Brumbarov K, et al. WNT-conditioned media differentially affect the proliferation and differentiation of cord blood-derived CD133\(^{+}\) cells in vitro. Differentiation. 2007;75:100–11.

    PubMed  CAS  Google Scholar 

  228. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–14.

    PubMed  CAS  Google Scholar 

  229. Kirstetter P, Anderson K, Porse BT, et al. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol. 2006;7:1048–56.

    PubMed  CAS  Google Scholar 

  230. Cobas M, Wilson A, Ernst B, et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med. 2004;199:221–9.

    PubMed  CAS  Google Scholar 

  231. Sato N, Meijer L, Skaltsounis L, et al. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med. 2004;10:55–63.

    PubMed  CAS  Google Scholar 

  232. Trowbridge JJ, Xenocostas A, Moon RT, et al. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat Med. 2006;12:89–98.

    PubMed  CAS  Google Scholar 

  233. Giles RH, Lolkema MP, Snijckers CM, et al. Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene. 2006;25:3065–70.

    PubMed  CAS  Google Scholar 

  234. Kaidi A, Williams AC, Paraskeva C. Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol. 2007;9:210–7.

    PubMed  CAS  Google Scholar 

  235. Hogan BL. Bone morphogenetic proteins in development. Curr Opin Genet Dev. 1996;6:432–8.

    PubMed  CAS  Google Scholar 

  236. Ying QL, Nichols J, Chambers I, et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115:281–92.

    PubMed  CAS  Google Scholar 

  237. Winnier G, Blessing M, Labosky PA, et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 1995;9:2105–16.

    PubMed  CAS  Google Scholar 

  238. Johansson BM, Wiles MV. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol. 1995;15:141–51.

    PubMed  CAS  Google Scholar 

  239. Keller JR, Mantel C, Sing GK, et al. Transforming growth factor beta 1 selectively regulates early murine hematopoietic progenitors and inhibits the growth of IL-3-dependent myeloid leukemia cell lines. J Exp Med. 1988;168:737–50.

    PubMed  CAS  Google Scholar 

  240. Hatzfeld J, Li ML, Brown EL, et al. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J Exp Med. 1991;174:925–9.

    PubMed  CAS  Google Scholar 

  241. Bruno E, Horrigan SK, Van Den BD, et al. The Smad5 gene is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on human hematopoiesis. Blood. 1998;91:1917–23.

    PubMed  CAS  Google Scholar 

  242. Fortunel N, Batard P, Hatzfeld A, et al. High proliferative potential-quiescent cells: a working model to study primitive quiescent hematopoietic cells. J Cell Sci. 1998;111:1867–75.

    PubMed  CAS  Google Scholar 

  243. Bhatia M, Bonnet D, Wu D, et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J Exp Med. 1999;189:1139–48.

    PubMed  CAS  Google Scholar 

  244. Ludwig TE, Bergendahl V, Levenstein ME, et al. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3:637–46.

    PubMed  CAS  Google Scholar 

  245. Brons IG, Smithers LE, Trotter MW, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–5.

    PubMed  CAS  Google Scholar 

  246. Tesar PJ, Chenoweth JG, Brook FA, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–9.

    PubMed  CAS  Google Scholar 

  247. Heldin CH, Miyazono K, ten Dijke P, et al. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465–71.

    PubMed  CAS  Google Scholar 

  248. Larsson J, Karlsson S. The role of Smad signaling in hematopoiesis. Oncogene. 2005;24:5676–92.

    PubMed  CAS  Google Scholar 

  249. Singbrant S, Moody JL, Blank U, et al. Smad5 is dispensable for adult murine hematopoiesis. Blood. 2006;108:3707–12.

    PubMed  CAS  Google Scholar 

  250. Blank U, Karlsson G, Moody JL, et al. Smad7 promotes self-renewal of hematopoietic stem cells. Blood. 2006;108:4246–54.

    PubMed  CAS  Google Scholar 

  251. Chadwick K, Shojaei F, Gallacher L, Bhatia M. Smad7 alters cell fate decisions of human hematopoietic repopulating cells. Blood. 2005;105:1905–15.

    PubMed  CAS  Google Scholar 

  252. Karlsson G, Blank U, Moody JL, et al. Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med. 2007;204: 467–74.

    PubMed  CAS  Google Scholar 

  253. Tabatabai G, Frank B, Moehle R, et al. Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain. 2006;129:2426–35.

    PubMed  Google Scholar 

  254. Akman HO, Zhang H, Siddiqui MA, et al. Response to hypoxia involves transforming growth factor-beta2 and Smad proteins in human endothelial cells. Blood. 2001;98:3324–31.

    PubMed  CAS  Google Scholar 

  255. Sanchez-Elsner T, Botella LM, Velasco B, et al. Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem. 2001;276:38527–35.

    PubMed  CAS  Google Scholar 

  256. Sanchez-Elsner T, Botella LM, Velasco B, et al. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem. 2002;277:43799–808.

    PubMed  CAS  Google Scholar 

  257. Sanchez-Elsner T, Ramirez JR, Sanz-Rodriguez F, et al. A cross-talk between hypoxia and TGF-beta orchestrates erythropoietin gene regulation through SP1 and Smads. J Mol Biol. 2004;336: 9–24.

    PubMed  CAS  Google Scholar 

  258. McMahon S, Charbonneau M, Grandmont S, et al. Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem. 2006;281:24171–81.

    PubMed  CAS  Google Scholar 

  259. Smith AG. Mouse embryo stem cells: their identification, propagation and manipulation. Semin Cell Biol. 1992;3:385–99.

    PubMed  CAS  Google Scholar 

  260. Matsuda T, Nakamura T, Nakao K, et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 1999;18:4261–9.

    PubMed  CAS  Google Scholar 

  261. Jeong CH, Lee HJ, Cha JH, et al. Hypoxia-inducible factor-1 alpha inhibits self-renewal of mouse embryonic stem cells in vitro via negative regulation of the leukemia inhibitory factor-STAT3 pathway. J Biol Chem. 2007;282:13672–9.

    PubMed  CAS  Google Scholar 

  262. Dahron L, Opitz SL, Zaehres H, et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells. 2004;22:770–8.

    Google Scholar 

  263. Lovell-Badge R. Many ways to pluripotency. Nat Biotechnol. 2007;25:1114–6.

    PubMed  CAS  Google Scholar 

  264. Black SM, Devol JM, Wedgwood S. Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. Am J Physiol Cell Physiol. 2008;294:C345–54.

    PubMed  CAS  Google Scholar 

  265. Rappold I, Watt SM, Kusadasi N, Rose-John S, Hatzfeld J, Ploemacher RE. Gp130-signaling synergizes with FL and TPO for the long-term expansion of cord blood progenitors. Leukemia. 1999;13:2036–48.

    PubMed  CAS  Google Scholar 

  266. Nandurkar HH, Robb L, Tarlinton D, Barnett L, Köntgen F, Begley CG. Adult mice with targeted mutation of the interleukin-11 receptor (IL11Ra) display normal hematopoiesis. Blood. 1997;90:2148–59.

    PubMed  CAS  Google Scholar 

  267. Chung YJ, Park BB, Kang YJ, et al. Unique effects of Stat3 on the early phase of hematopoietic stem cell regeneration. Blood. 2006;108:1208–15.

    PubMed  CAS  Google Scholar 

  268. Gray MJ, Zhang J, Ellis LM, et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene. 2005;24:3110–20.

    PubMed  CAS  Google Scholar 

  269. Jung JE, Lee HG, Cho IH, et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 2005;19:1296–98.

    PubMed  CAS  Google Scholar 

  270. Zhang XB, Schwartz JL, Humphries RK, Kiem HP. Effects of HOXB4 overexpression on ex vivo expansion and immortalization of hematopoietic cells from different species. Stem Cells. 2007;25:2074–81.

    PubMed  CAS  Google Scholar 

  271. Yeoh JS, de Haan G. Fibroblast growth factors as regulators of stem cell self-renewal and aging. Mech Ageing Dev. 2007;128:17–24.

    PubMed  CAS  Google Scholar 

  272. Zhang CC, Kaba M, Ge G, et al. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med. 2006;12:240–5.

    PubMed  Google Scholar 

  273. Gupta R, Hong D, Iborra F, Sarno S, Enver T. NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science. 2007;316:590–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne M. Watt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Watt, S.M., Tsaknakis, G., Forde, S.P., Carpenter, L. (2009). Stem Cells, Hypoxia and Hypoxia-Inducible Factors. In: Rajasekhar, V.K., Vemuri, M.C. (eds) Regulatory Networks in Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-60327-227-8_18

Download citation

Publish with us

Policies and ethics