Skip to main content

Antioxidants as Targeted Therapy: A Special Protective Role for Pomegranate and Paraoxonases (PONs)

  • Chapter
  • First Online:
Asymptomatic Atherosclerosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1291 Accesses

Abstract

Increased oxidative stress exists in patients with high risk for atherosclerosis development (hypercholesterolemic, hypertensive, diabetic). This phenomenon is associated with reduced antioxidant status [decreased levels of vitamin E, carotenoids, superoxide dismutase (SOD), catalase, glutathione, and HDL-associated paraoxonase 1 (PON1) activity]. Oxidative stress in atherosclerotic patients exists also in their blood, as well as in arterial wall cells, including macrophages (the hallmark of foam cells in early atherogenesis).

The use of nutritional antioxidants such as vitamin E, carotenoids (lycopene and ß-carotene), and polyphenols (such as those present in red wine, licorice root, or pomegranate) by atherosclerotic patients reduces oxidative stress and attenuates atherosclerosis development. This latter phenomenon is related to protective direct effects of nutritional antioxidants, and to indirect effect by increasing serum HDL-associated paraoxonase activity, which results in the breakdown of specific lipid peroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mayr M, Kiechl S, Tsimikas S, et al. Oxidized low-density lipoprotein autoantibodies, chronic infections, and carotid atherosclerosis in a population-based study. J. Am. Coll. Cardiol. 2006; 47:2436–2443.

    Article  PubMed  CAS  Google Scholar 

  2. Basarici I, Altekin RE, Demir I, et al. Associations of isoprostanes-related oxidative stress with surrogate subclinical and angiographic measure of atherosclerosis. Coron. Artery. Dis. 2007; 18:615–620.

    Article  PubMed  Google Scholar 

  3. Liu SX, Hou FF, Guo ZJ, et al. Advanced oxidation protein products accelerate atherosclerosis through promoting oxidative stress and inflammation. Arterioscler. Thromb. Vasc. Biol. 2006; 26:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  4. Polidori MC, Pratico D, Parente B, et al. Elevated lipid peroxidation biomarkers and low antioxidants status in atherosclerotic patients with increased carotid or iliofemoral intima media thickness. J. Invest. Med. 2007; 55:163–167.

    Article  CAS  Google Scholar 

  5. Renard C, Van Obberghen E. Role of diabetes in atherosclerosis pathogenesis. What have we learned from animal models? Diabetes. Metab. 2006; 32:15–32.

    Article  PubMed  CAS  Google Scholar 

  6. Kocak H, Gumuslu S, Ermis C, et al. Oxidative stress and asymmetric dimethylarginine is independently associated with carotid intima media thickness in peritoneal dialysis patients. Am. J. Nephrol. 2008; 28:91-96.

    Article  PubMed  CAS  Google Scholar 

  7. Keidar S, Kaplan M, Shapira C, et al. Low density lipoprotein isolated from patients with essential hypertension exhibits increased propensity for oxidation and enhanced uptake by macrophages: a possible role for angiotensin II. Atherosclerosis 1994; 107:71–84.

    Article  PubMed  CAS  Google Scholar 

  8. Tiwari RL, Singh V, Barthwal MK. Macrophages: an elusive yet emerging therapeutic target of atherosclerosis. Med. Res. Rev. 2008; 28:483–544.

    Article  PubMed  CAS  Google Scholar 

  9. Lusis AJ. Atherosclerosis. Nature 2000; 404:233–241.

    Article  Google Scholar 

  10. Aviram M, Rosenblat M. Oxidative stress in cardiovascular disease: role of oxidized lipoproteins in macrophage foam cell formation and atherosclerosis. In: Redox-Genom Interactions in Health and Disease. New York: Dekker; 2003.p. 57–90. Chapter 25.

    Google Scholar 

  11. Fuhrman B, Partoush A, Volkova N, et al. Ox-LDL induces monocyte-to macrophage differentiation in vivo: possible role for the macrophage colony stimulating factor receptor (M-CSF-R). Atherosclerosis 2008; 196:598–607.

    Article  PubMed  CAS  Google Scholar 

  12. Fuhrman B, Volkova N, Aviram M. Oxidative stress increases the expression of the CD36 scavenger receptors and the cellular uptake of oxidized LDL in macrophages from atherosclerotic mice: protective role of antioxidants and paraoxonase. Atherosclerosis 2002; 161:307–316.

    Article  PubMed  CAS  Google Scholar 

  13. Aviram M, Kaplan M, Rosenblat M, et al. Dietary antioxidants and paraoxonases against LDL oxidation and atherosclerosis development. Handb. Exp. Pharmacol. 2005; 170:263–300.

    Article  PubMed  CAS  Google Scholar 

  14. Kaliora AC, Deoussis GV, Schmidt H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 2006; 187:1–17.

    Article  PubMed  CAS  Google Scholar 

  15. Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu. Rev. Nutr. 2005; 25:151–174.

    Article  PubMed  CAS  Google Scholar 

  16. Bleys J, Miller ER, Pastor-Barriuso R, et al. Vitamin–mineral supplementation and the progression of atherosclerosis: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2006; 84:880–887.

    PubMed  CAS  Google Scholar 

  17. Milman U, Blum S, Shapira C, Aronson D, et al. Vitamin E supplementation reduces cardiovascular events in a subgroup of middle-aged individuals with both type 2 diabetes mellitus and the haptoglobin 2-2 genotype: a prospective double-blined clinical trial. Arterioscler. Thromb. Vasc. Biol. 2008; 28:341–347.

    Article  PubMed  CAS  Google Scholar 

  18. Fuhrman B, Volkova N, Rosenblat M, et al. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic. Antioxid. Redox. Signal. 2000; 2:491–506.

    Article  PubMed  CAS  Google Scholar 

  19. Sesso HD. Carotenoids and cardiovascular disease: what research gaps remain? Curr. Opin. Lipidol. 2006; 17:11–16.

    Article  PubMed  CAS  Google Scholar 

  20. Hozawa A, Jacobs DR Jr, Steffes MW, et al. Associations of serum carotenoid concentrations with the development of diabetes and with insulin concentration: interaction with smoking: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Epidemiol. 2006; 163:929–937.

    Article  PubMed  Google Scholar 

  21. Gianetti J, Pedrinelli R, Petrucci R, et al. Inverse association between carotid intima-media thickness and the antioxidant lycopene in atherosclerosis. Am. Heart. J. 2002;143:467–474.

    Article  PubMed  CAS  Google Scholar 

  22. Engelhard YN, Gazer B, Paran E. Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension: a double-blind, placebo- controlled pilot study. Am. Heart. J. 2006; 151:100.

    Article  PubMed  Google Scholar 

  23. Fuhrman B, Aviram M. Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr. Opin. Lipidol. 2001; 12:41–48.

    Article  PubMed  CAS  Google Scholar 

  24. Knekt P, Kumpulainen J, Jarvinen R, et al. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002; 76:560–568.

    PubMed  CAS  Google Scholar 

  25. Fuhrman B, Buch S, Vaya J, et al. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: in vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 1997; 66:267–275.

    PubMed  CAS  Google Scholar 

  26. Rosenblat M, Belinky P, Vaya J, et al. Macrophage enrichment with the isoflavan glabridin inhibits NADPH oxidase-induced cell mediated oxidation of low density lipoprotein. J. Biol. Chem. 1999; 274:13790–13799.

    Article  PubMed  CAS  Google Scholar 

  27. Belinky PA, Aviram M, Mahmood S, et al. Structural aspects of the inhibitory effect of glabridin on LDL oxidation. Free. Radic. Biol. Med. 1998; 24:1419–1429.

    Article  PubMed  CAS  Google Scholar 

  28. Kaur G, Roberti M, Raul F, et al. Suppression of human monocyte tissue factor induction by red wine phenolics and synthetic derivatives of resveratrol. Thromb. Res. 2007; 119:247–256.

    Article  PubMed  CAS  Google Scholar 

  29. Perez-Vizcaino F, Duarte J, et al. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free. Radic. Res. 2006; 40:1054–1065.

    Article  PubMed  CAS  Google Scholar 

  30. Li JM, Mukamal KJ. An update on alcohol and atherosclerosis. Curr. Opin. Lipidol. 2004; 15:673–680.

    Article  PubMed  CAS  Google Scholar 

  31. Hansen AS, Marckmann P, Dragsted LO, et al. Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur. J. Clin. Nutr. 2005; 59:449–455.

    Article  PubMed  CAS  Google Scholar 

  32. Fuhrman B, Lavy A, and Aviram M. Consumption of red wine with meals reduces the susceptibility of human plasma and LDL to undergo lipid peroxidation. Am. J. Clin. Nutr. 1995; 61:549–554.

    PubMed  CAS  Google Scholar 

  33. Estruch R, Sacanella E, Badia E, et al. Different effects of red wine and gin consumption on inflammatory biomarkers of atherosclerosis: a prospective randomized crossover trial. Effects of wine on inflammatory markers. Atherosclerosis 2004; 175:117–123.

    Article  PubMed  CAS  Google Scholar 

  34. Naissides M, Mamo JC, Jameas AP, et al. The effect of chronic consumption of red wine on cardiovascular disease risk factors in postmenopausal women. Atherosclerosis 2006; 185:438–445.

    Article  PubMed  CAS  Google Scholar 

  35. Howard A, Chopra M, Thurnham D, et al. Red wine consumption and inhibition of LDL oxidation: what are the important components? Med. Hypotheses 2002; 59:101–104.

    Article  PubMed  CAS  Google Scholar 

  36. Gil MI, Tomas-Barberan FA, Hess-Pierce B, et al. Antioxidant activity of pomegranate juice and its relationship with phenolics composition and processing. J. Agric. Food. Chem. 2000; 48:4581–4589.

    Article  PubMed  CAS  Google Scholar 

  37. Aviram M, Volkova N, Coleman R, et al. Pomegranate phenolics from the peels, arils, and flowers are antiatherogenic: studies in vivo in atherosclerotic apolipoprotein E-deficient mice and in vitro in cultured macrophages and lipoproteins. J. Agric. Food. Chem. 2008; 56:1148–1157.

    Article  PubMed  CAS  Google Scholar 

  38. Seeram NP, Adams LS, Henning SM, et al. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nut. Biochem. 2005; 16:360–367.

    Article  CAS  Google Scholar 

  39. Rozenberg O, Howell A, Aviram M. Pomegranate juice sugar fraction reduces macrophage oxidative stress, whereas white grape juice sugar fraction increases it. Atherosclerosis 2006; 188:68–76.

    Article  PubMed  CAS  Google Scholar 

  40. Fuhrman B, Volkova N, Aviram M. Pomegranate juice inhibits oxidized LDL uptake and cholesterol biosynthesis in macrophages. J. Nutr. Biochem. 2005; 16:570–576.

    Article  PubMed  CAS  Google Scholar 

  41. De Nigris F, Williams-Ignarro S, Sica V, et al. Effects of a pomegranate fruit extract rich in punicalagin on oxidation-sensitive genes and eNos activity at sites of perturbed shear stress and atherogenesis. Cardiovasc. Res. 2007; 73:414–423.

    Article  PubMed  CAS  Google Scholar 

  42. Mertens-Talcott SU, Jilma-Stonhlawetz P, Rios J, et al. Absorption, metabolism, and antioxidant effects of pomegranate (Punica granatum) polyphenols after ingestion of a standardized extract in healthy human volunteers. J. Agric. Food. Chem. 2006; 54:8956–8961.

    Article  PubMed  CAS  Google Scholar 

  43. Aviram M, Dornfeld L, Rosenblat M, et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 2000; 71:1062–1076.

    PubMed  CAS  Google Scholar 

  44. Aviram M, Rosenblat M, Gaitini D, et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 2004; 23:423–433.

    Article  PubMed  CAS  Google Scholar 

  45. Sumner MD, Elliott-Eller M, Weidner G, et al. Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am. J. Cardiol. 2005; 96:810–814.

    Article  PubMed  CAS  Google Scholar 

  46. Aviram M, Dornfeld L. Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 2001; 195–198.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenblat M, Hayek T, Aviram M. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis 2006; 188:68–76.

    Article  Google Scholar 

  48. Sies H. Glutathione and its role in cellular functions. Free. Radic. Biol. Med. 1999; 27:916–921.

    Article  PubMed  CAS  Google Scholar 

  49. Rosenblat M, Volkova N, Coleman R, et al. Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice. Atherosclerosis 2007; 195:E61–E68.

    Article  PubMed  CAS  Google Scholar 

  50. Lin SJ, Shyue SK, Shih MC, et al. Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors. Atherosclerosis 2007; 190:124–134.

    Article  PubMed  CAS  Google Scholar 

  51. Lin SJ, Shyue SK, Liu PL, et al. Adenovirus-mediated overexpression of catalase attenuates Ox-LDL induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. J. Mol. Cell. Cardiol. 2004; 36:129-139.

    Article  PubMed  CAS  Google Scholar 

  52. Colak E, Majkic-Singh N, Stankovic S, et al. Parameters of antioxidative defence in type 2 diabetic patients with cardiovascular complications. Ann. Med. 2005; 37:613–620.

    Article  PubMed  CAS  Google Scholar 

  53. Ashfaq S, Abramson JL, Jones DP, et al. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J. Am. Coll. Cardiol. 2006; 47:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  54. Moskaug JO, Carlsen H, Myhrstad MC, et al. Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 2005; 81:277S–283S.

    PubMed  CAS  Google Scholar 

  55. Robb EL, Page MM, Wiens BE, et al. Molecular mechanisms of oxidative stress resistance induced by resveratrol: specific and progressive induction of MnSOD. Biochem. Biophys. Res. Commun. 2008; 367:406–412.

    Article  PubMed  CAS  Google Scholar 

  56. Alia M, Mateos R, Ramos S, et al. Influence of quercetin and rulin on growth and antioxidant defense system of a human hepatoma cell lin (HepG2). Eur. J. Nutr. 2006; 45:19–28.

    Article  PubMed  CAS  Google Scholar 

  57. Ng CJ, Shih DM, Hama SY, et al. The paraoxonase gene family and atherosclerosis. Free. Radic. Biol. Med. 2005; 38:153–163.

    Article  PubMed  CAS  Google Scholar 

  58. Gaidukov L, Tawfik DS. High affinity, stability, and lactonase activity of serum paraoxonase PON1 anchored on HDL with apoA-I. Biochemistry 2005; 44:11843–11854.

    Article  PubMed  CAS  Google Scholar 

  59. Fuhrman B, Volkova N, et al. Paraoxonase 1 (PON1) is present in postprandial chylomicrons. Atherosclerosis 2005; 180:55–61.

    Article  PubMed  CAS  Google Scholar 

  60. Mackness B, Davies GK, Turkie W, et al. Paraoxonase status in coronary heart disease. Are activity and concentration more important than genotype? Arterioscler. Thromb. Vasc. Biol. 2001; 21:1451–1457.

    Article  PubMed  CAS  Google Scholar 

  61. Harangi M, Seres I, Magyar MT, et al. Association between human paraoxonase 1 activity and intima-media thickness in subjects under 55 years of age with carotid artery diseases. Cerebrovasc. Dis. 2007; 25:122–128.

    Article  PubMed  Google Scholar 

  62. Letellier C, Durou MR, Jouanolle AM, et al. Serum paraoxonase activity and paraoxonase gene polymorphism in type 2 diabetic patients with or without vascular complications. Diabetes. Metab. 2002; 28:297–304.

    PubMed  CAS  Google Scholar 

  63. Karabina SA, Lehner AN, Frank E, et al. Oxidative inactivation of paraoxonase-implications in diabetes mellitus and atherosclerosis. Biochem. Biophys. Acta. 2005; 1725:213–221.

    Article  PubMed  CAS  Google Scholar 

  64. Rosenblat M, Karry R, Aviram M. Paraoxonase 1 (PON1) is a more potent antioxidant and stimulant of macrophage cholesterol efflux, when present in HDL than in lipoprotein-deficient serum: relevance to diabetes. Atherosclerosis 2006; 187:74–81.

    PubMed  CAS  Google Scholar 

  65. Aviram M, Rosenblat M, Bisgaier CL, et al. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J. Clin. Invest. 1998; 101:1581–1590.

    Article  PubMed  CAS  Google Scholar 

  66. Aviram M, Rosenblat M. Paraoxonases 1, 2 and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free. Radic. Biol. Chem. 2004; 37:1304–1316.

    Article  CAS  Google Scholar 

  67. Aviram M, Hardak E, Vaya J, et al. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 2000; 101:2510–2517.

    Article  PubMed  CAS  Google Scholar 

  68. Rozenberg O, Shih DM, Aviram M. Human serum paraoxonase (PON1) decreases macrophage cholesterol biosynthesis: a possible role for its phodpholipase-A2 activity and lysophosphatidylcholine formation. Arterioscler. Thromb. Vasc. Biol. 2003; 23:461–467.

    Article  PubMed  CAS  Google Scholar 

  69. Rosenblat M, Gaidukov L, Khersonsky O, et al. The catalytic histidine dyad of high density lipoprotein-associated serum paraoxonase-1 (PON1) is essential for PON1-mediated inhibition of low density lipoprotein oxidation and stimulation of macrophage cholesterol efflux. J. Biol. Chem. 2006; 281:7657–7665.

    Article  PubMed  CAS  Google Scholar 

  70. Aviram M, Rosenblat M, Bisgaier CL, et al. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 1998; 138:271–280.

    Article  PubMed  CAS  Google Scholar 

  71. Fuhrman B, Aviram M. Preservation of paraoxonase activity by wine flavonoids : possible role in protection of LDL from lipid peroxidation. Ann. N Y. Acad. Sci. 2002; 957:321–324.

    Article  PubMed  CAS  Google Scholar 

  72. Gouedard C, Barouki R, Morel Y. Induction of paraoxonase-1 gene expression by resveratrol. Arterioscler. Thromb. Vasc. Biol. 2004; 24:2378–2383.

    Article  PubMed  CAS  Google Scholar 

  73. Jarvik GP, Tsai NT, McKinstry LA, et al. Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler. Thromb. Vasc. Biol. 2002; 22:1329–1333.

    Article  PubMed  CAS  Google Scholar 

  74. Ng CJ, Wadleigh DJ, Gangopadhyay A, et al. Paraoxonase-2 is an ubiquitously expressed protein with antioxidant properties, and is capable of preventing cell-mediated oxidative modification of low-density lipoprotein. J. Biol. Chem. 2001; 276:44444–44449.

    Article  PubMed  CAS  Google Scholar 

  75. Rosenblat M, Draganov D, Watson CE, et al. Mouse macrophage paraoxonase 2 (PON2) activity is increased whereas cellular PON3 activity is decreased under oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2003; 23:468–474.

    Article  PubMed  CAS  Google Scholar 

  76. Rosenblat M, Hayek T, Hussein K, et al. Decreased macrophage paraoxonase 2 expression in patients with hypercholesterolemia is the result of their increased cellular cholesterol content: effect of atorvastatin therapy. Arterioscler. Thromb. Vasc. Biol. 2004; 24:175–180.

    Article  PubMed  CAS  Google Scholar 

  77. Mackness B, McElduff P, Mackness MI. The paraoxonase-2-310 polymorphism is associated with the presence of microvascular complications in diabetic mellitus. J. Intern. Med. 2005; 258:363–368.

    Article  PubMed  CAS  Google Scholar 

  78. Horke S, Witte I, Wilgenbus P, et al. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation 2007; 115:2055–2064.

    Article  PubMed  CAS  Google Scholar 

  79. Shiner M, Fuhrman B, Aviram M. Paraoxonase 2 (PON2) expression is upregulated via a reduced nicotinamide- adenine-dinucleotide-phosphate (NADPH)-oxidase-dependent mechanism during monocytes differentiation into macrophages. Free. Radical. Biol. Med. 2004; 37:2052–2063.

    Article  CAS  Google Scholar 

  80. Shiner M, Fuhrman B, Aviram M. Macrophage paraoxonase 2 (PON2) expression is up-regulated by pomegranate juice phenolic anti-oxidants via PPARgamma and AP-1 pathway activation. Atherosclerosis 2007; 195:313–321.

    Article  PubMed  CAS  Google Scholar 

  81. Shiner M, Fuhrman B, Aviram M. A biphasic U-shape effect of cellular oxidative stress on the macrophage anti-oxidant paraoxonase 2 (PON2) enzymatic activity. Biochem. Biophys. Res. Commun. 2006; 349:1094–1099.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosenblat, M., Aviram, M. (2011). Antioxidants as Targeted Therapy: A Special Protective Role for Pomegranate and Paraoxonases (PONs). In: Naghavi, M. (eds) Asymptomatic Atherosclerosis. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-179-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-179-0_48

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-178-3

  • Online ISBN: 978-1-60327-179-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics