Skip to main content

Candida Biofilm Analysis in the Artificial Throat Using FISH

  • Protocol
Candida albicans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 499))

Abstract

Biofilm formation is a common complication of the use of prosthetic devices. In clinical settings, biofilms can be comprised of one or more microbial species. In order to investigate the interaction between different species within a biofilm, a reproducible, reliable model system has to be utilized and an appropriate system for species identification applied. The present chapter describes the artificial throat model, a model system for growing mixed species biofilms on shunt prostheses. The model is used in conjugation with fluorescent in situ hybridization (FISH), which facilitates identification and localization of the resident microorganisms within biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Potera, C. (1999) Forging a link between biofilms and disease. Science 283, 1837–1839.

    Article  PubMed  CAS  Google Scholar 

  2. Douglas, L. J. (2002) Medical importance of biofilms in Candida infections. Rev. Iberoam. Micol. 19, 139–143.

    PubMed  Google Scholar 

  3. Douglas, L. J. (2003) Candida biofilms and their role in infection. Trends Microbiol. 11, 30–36.

    Article  PubMed  CAS  Google Scholar 

  4. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. (1995) Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745.

    Article  CAS  Google Scholar 

  5. Hawser, S. P., and Douglas, L. J. (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 62, 915–921.

    PubMed  CAS  Google Scholar 

  6. Hawser, S. P., and Douglas, L. J. (1995). Resistance of Candida albicansbiofilms to antifungal agents in vitro. Antimicrob. Agents Chemother. 39, 2128–2131.

    Article  PubMed  CAS  Google Scholar 

  7. Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T., and Ghannoum, M. A. (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183, 5385–5394.

    Article  PubMed  CAS  Google Scholar 

  8. Ramage, G., Vande Walle, K., Wickes, B. L., and Lopez-Ribot, J. L. (2001) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob. Agents Chemother. 45, 2475–2479.

    Article  PubMed  CAS  Google Scholar 

  9. Ramage, G., Vandewalle, K., Bachmann, S. P., Wickes, B. L., and Lopez-Ribot, J. L. 2002. In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob. Agents Chemother. 46, 3634–3636.

    Article  PubMed  CAS  Google Scholar 

  10. Bachmann, S. P., Ramage, G., Vandewalle, K., Patterson, T. F., Wickes, B. L., and Lopez-Ribot, J. L. (2003) Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob. Agents Chemother. 47, 3657–3659.

    Article  PubMed  CAS  Google Scholar 

  11. Lewis, R. E., Kontoyiannis, D. P., Darouiche, R. O., Raad, I. I., and Prince, R. A. (2002) Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob. Agents Chemother. 46, 3499–3505.

    Article  PubMed  CAS  Google Scholar 

  12. Garcia-Sanchez, S., Aubert, S., Iraqui, I., Janbon, G., Ghigo, J. M., and d'Enfert, C. (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3, 536–545.

    Article  PubMed  CAS  Google Scholar 

  13. Leunisse, C., van Weissenbruch, R., Busscher, H. J., van der Mei, H. C., and Albers, F. W. (1999) The artificial throat: a new method for standardization of in vitro experiments with tracheo-oesophageal voice prostheses. Acta Otolaryngol. 119, 604–608.

    PubMed  CAS  Google Scholar 

  14. Schuster, M., Lohscheller, J., Kummer, P., Hoppe, U., Eysholdt, U., and Rosanowski, F. (2003) Quality of life in laryngectomees after prosthetic voice restoration. Folia Phoniatr. Logop. 55, 211–219.

    Article  PubMed  Google Scholar 

  15. Mahieu, H. F., van Saene, H. K., Rosingh, H. J., and Schutte, H. K. 1986. Candida vegetations on silicone voice prostheses. Arch. Otolaryngol. Head Neck Surg. 112, 321–325.

    Article  PubMed  CAS  Google Scholar 

  16. Palmer, M. D., Johnson A. P., and Elliott, T. S. (1993) Microbial colonization of Blom-Singer prostheses in postlaryngectomy patients. Laryngoscope 103, 910–914.

    Article  PubMed  CAS  Google Scholar 

  17. Neu, T. R., Verkerke, G. J., Herrmann, I. F., Schutte, H. K., van der Mei, H. C., and Busscher, H. J. (1994) Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility. J. Appl. Bacteriol. 76, 521–528.

    Article  PubMed  CAS  Google Scholar 

  18. Natarajan, B., Richardson, M. D., Irvine, B. W., and Thomas, M. (1994) The Provox voice prosthesis and Candida albicans growth: a preliminary report of clinical, mycological and scanning electron microscopic assessment. J. Laryngol. Otol. 108, 666–668.

    PubMed  CAS  Google Scholar 

  19. Van den Hoogen, F. J., Oudes, M. J., Hombergen, G., Nijdam, H. F., and Manni, J. J. (1996). The Groningen, Nijdam and Provox voice prostheses: a prospective clinical comparison based on 845 replacements. Acta Otolaryngol. 116, 119–124.

    Article  Google Scholar 

  20. Ackerstaff, A. H., Hilgers, F. J., Meeuwis, C. A., van der Velden, L. A., van den Hoogen, F. J., Marres, H. A., Vreeburg, G. C., and Manni, J. J. (1999) Multi-institutional assessment of the Provox 2 voice prosthesis. Arch. Otolaryngol. Head Neck Surg. 125, 167–173.

    PubMed  CAS  Google Scholar 

  21. Amann, R., Fuchs, B. M., and Behrens, S. (2001) The identification of microorganisms by fluorescence in situ hybridisation. Curr. Opin. Biotechnol. 12, 231–236.

    Article  PubMed  CAS  Google Scholar 

  22. Aoi, Y. (2002) In situ identification of microorganisms in biofilm communities. J. Biosci. Bioeng. 94, 552–556.

    PubMed  CAS  Google Scholar 

  23. Thurnheer, T., Gmur, R., and Guggenheim, B. (2004) Multiplex FISH analysis of a six-species bacterial biofilm. J. Microbiol. Methods 56, 37–47.

    Article  PubMed  CAS  Google Scholar 

  24. Buijssen, K. J., Harmsen, H. J., van der Mei, H. C., Busscher, H. J., and van der Laan, B. F. (2007) Lactobacilli: Important in biofilm formation on voice prostheses. Otolaryngol. Head Neck Surg. 137, 505–507.

    Google Scholar 

  25. Oosterhof, J. J., Buijssen, K. J., Busscher, H. J., van der Laan, B. F., and van der Mei, H. C. (2006) Effects of quaternary ammonium silane coatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses. Appl. Environ. Microbiol. 72, 3673–3677.

    Article  PubMed  CAS  Google Scholar 

  26. Van der Mei, H. C., Free, R. H., Elving, G. J., van Weissenbruch, R., Albers, F. W., and Busscher, H. J. (2000) Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J. Med. Microbiol. 49, 713–718.

    PubMed  Google Scholar 

  27. Elving, G. J., van der Mei, H. C., Busscher, H. J., van Weissenbruch, R., and Albers, F. (2003) Influence of different combinations of bacteria and yeasts in voice prosthesis biofilms on air flow resistance. Antonie Van Leeuwenhoek 83, 45–55.

    Article  PubMed  CAS  Google Scholar 

  28. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl D. A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krom, B.P., Buijssen, K., Busscher, H.J., van der Mei, H.C. (2009). Candida Biofilm Analysis in the Artificial Throat Using FISH. In: Cihlar, R.L., Calderone, R.A. (eds) Candida albicans. Methods in Molecular Biology, vol 499. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-151-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-151-6_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-760-0

  • Online ISBN: 978-1-60327-151-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics