Skip to main content

Affinity Precipitation of Proteins Using Metal Chelates

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 421))

  • 2275 Accesses

Summary

Metal affinity precipitation has been successfully developed as a simple purification process for the proteins that have affinity for the metal ions. The copolymers of vinylimidazole with N-isopropylacrylamide are easily synthesized by radical polymerization. When loaded with Cu(II) and Ni(II) ions, these copolymers are capable of selectively precipitating proteins with natural metal-binding groups or histidine-tagged recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, M.C., Furman, T. C., Ingolia, T. D., and Pidgeon, C. (1988) Chelating peptide immobilized metal ion affinity chromatography. J. Biol. Chem. 263, 7211–7215.

    CAS  PubMed  Google Scholar 

  2. Kumar, A., Wahlund, P.-O., Kepka, C., Galaev, I. Yu., and Mattiasson, B. (2003) Purification of histidine-tagged single chain Fv-antibody fragments by metal chelate affinity precipitation using thermo-responsive copolymers. Biotechnol. Bioeng. 84, 495–503.

    Article  Google Scholar 

  3. Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., and Stüber, D. (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 6, 1321–1325.

    Article  CAS  Google Scholar 

  4. Skerra, A. and Schmidt, T. M. G. (1999) Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol. Eng. 16, 79–86.

    Article  CAS  PubMed  Google Scholar 

  5. Maina, C. V., Riggs, P. D., Grandea, A. G., III, Slatko, B. E., Moran, L. S., Tagliamonte, J. A., Mcreynolds, L. A., and Guan, C. D. (1988) An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose binding protein. Gene 74,365–373.

    Article  CAS  PubMed  Google Scholar 

  6. Ong, E., Greenwood, J. M., Gilkes, N. R., Kilburn, D. G., Miller, R. C., and Warren, R. A. (1989) The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol. 7, 239–243.

    Article  CAS  Google Scholar 

  7. Smith, D. B. and Johnson, K. S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  CAS  PubMed  Google Scholar 

  8. Smith, P. A., Tripp, B. C., DiBlasio-Smith, E. A., Lu, Z., LaVallie, E. R., and McCoy, J. M. (1998) A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli. Nucleic Acids Res. 26, 1414–1420.

    Article  CAS  PubMed  Google Scholar 

  9. Porath, J., Carlsson, J., Olsson, J., and Belfrage, G. (1975) Metal chelate affinity chromatography: a new approach to protein fractionation. Nature 258, 598–599.

    Article  CAS  PubMed  Google Scholar 

  10. Arnold, F. H. (1991) Metal-affinity separations: a new dimension in protein processing. Bio/Technology 9, 151–156.

    Article  CAS  PubMed  Google Scholar 

  11. Sulkowski, E. (1985) Purification of proteins by IMAC. Trends Biotechnol. 3, 1–7.

    Article  CAS  Google Scholar 

  12. Hemdan, E. S. and Porath, J. (1985) Interaction of amino acids with immobilized nickel iminodiacetate. J. Chromatogr. 323, 255–264.

    Article  CAS  Google Scholar 

  13. Fanou-Ayi, L. and Vijayalakshmi, M. (1983) Metal-chelate chromatography as a separation tool. Ann. N. Y. Acad. Sci. 413, 300–306.

    Article  CAS  PubMed  Google Scholar 

  14. Murphy, J. C., Jewell, D. L, White, K. I., Fox, G. E., and Willson, R. C. (2003) Nucleic acid separations utilizing immobilized metal affinity chromatography. Biotechnol. Prog. 19, 982–986.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar, A., Galaev, I. Yu., and Mattiasson, B. (1999) Metal chelate affinity precipitation: a new approach to protein purification. Bioseparation 7, 185–194.

    Article  Google Scholar 

  16. Stiborova, H., Kostal, J., Mulchandani, A., and Chen, W. (2003) One-Step metal-affinity purification of histidine-tagged proteins by temperature-triggered precipitation. Biotechnol. Bioeng. 82, 605–611.

    Article  CAS  PubMed  Google Scholar 

  17. Galaev, I. Yu., Kumar, A., Agarwal, R., Gupta, M. N., and Mattiasson, B. (1997) Imidazole a new ligand for metal affinity precipitation. Precipitation of Kunitz soybean trypsin inhibitor using Cu(II)-loaded copolymers of 1-vinylimidazole with N-vinylcaprolactam or N-isopropylacrylamide. Appl. Biochem. Biotechnol. 68, 121–133.

    Article  CAS  Google Scholar 

  18. Gupta, M. N. and Mattiasson, B. (1994) Affinity precipitation. In: Street G (ed.), Highly Selective Separations in Biotechnology, (pp. 7–33) Blackie Academic and Professional, London.

    Google Scholar 

  19. Van Dam, M. E, Wuenchell, G. E., and Arnold, F. H. (1989) Metal affinity precipitation of proteins. Biotechnol. Appl. Biochem. 11, 492–502.

    PubMed  Google Scholar 

  20. Lilius, G., Persson, M., Bülow, L., and Mosbach, K. (1991) Metal affinity precipitation of proteins carrying genetically attached polyhistidine affinity tails. Eur. J. Biochem. 198, 499–504.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, M. N., Kaul, R., Guoqiang, D., Dissing, U., and Mattiasson, B. (1996) Affinity precipitation of proteins. J. Mol. Recognit. 9, 356–359.

    Article  CAS  PubMed  Google Scholar 

  22. Flygare, S., Griffin, T., Larsson, P.-O., and Mosbach, K. (1983) Affinity precipitation of dehydrogenases. Anal. Biochem. 133, 409–416.

    Article  CAS  PubMed  Google Scholar 

  23. So, L. L. and Goldstein, I. J. (1967) Protein–carbohydrate interaction. IV. Application of the quantitative precipitin method to polysaccharide–Concanavalin A interaction. J. Biol. Chem. 242, 1617–1622.

    CAS  PubMed  Google Scholar 

  24. Galaev, I. Yu. and Mattiasson, B. (1999) Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 17,335–340.

    Article  CAS  PubMed  Google Scholar 

  25. Schild, H. G. (1992) Poly(N-isopropylacrylamide): experiment, theory and applications. Prog. Polym. Sci. 17, 163–249.

    Article  CAS  Google Scholar 

  26. Porath, J. (1992) Immobilized metal affinity chromatography. Protein Expr. Purif. 3, 263–281.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, A., Galaev, I. Yu., and Mattiasson, B. (1998) Affinity precipitation of α–amylase inhibitor from wheat meal by metal chelate affinity binding using Cu(II)-loaded copolymers of 1-vinylimidazole with N-isopropylacrylamide. Biotechnol. Bioeng. 59, 695–704.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, K. J. and Gregor, H. P. (1965) Metal-polyelectrolyte. X. Poly-N-vinylimidazole complexes with zinc(II) and with copper(II) and nitrilotriacetic acid. J. Phys. Chem. 69, 1252–1259.

    Article  CAS  Google Scholar 

  29. Todd, R. J., Johnson, R. D., and Arnold, F. H. (1994) Multiple-site binding interactions in metal-affinity chromatography. I. Equilibrium binding of engineered histidine-containing cytochromes c. J. Chromatogr. 662, 13–26.

    Article  CAS  Google Scholar 

  30. Gold, D. H. and Gregor, H. P. (1960) Metal–polyelectrolyte complexes. VIII. The poly-N-vinylimidazole–copper(II) complex. J. Phys. Chem. 64, 1464–1467.

    Article  CAS  Google Scholar 

  31. Balan, S., Murphy, J., Galaev, I., Yu., Kumar, A., Fox, G. E., Mattiasson, B., and C. Willson, R. C. (2003). Metal chelate affinity precipitation of RNA and purification of plasmid DNA. Biotechnol. Lett. 25,1111–1116.

    Article  CAS  PubMed  Google Scholar 

  32. Urry, D. W, Luan, C. H., Harris, C., and Parker, T. M. (1997) Protein-based materials with a profound range of properties and applications: the elastin ΔTt hydrophobic paradigm. In: McGrath, K. and Kaplan, D. (ed.), Proteinbased Materials, (pp. 133–177) Birkhauser, Boston.

    Google Scholar 

  33. Kostal, J., Mulchandani, A., and Chen, W. (2001) Tunable biopolymers for heavy metal removal. Macromolecules 34, 2257–2261.

    Article  CAS  Google Scholar 

  34. Carter, S., Rimmer, S., Sturdy, A., and Webb, M. (2005) Highly branched stimuli responsive poly[(N-isopropylacrylamide)-co-(1,2-propandiol-3-methacrylate)]s with protein binding functionality. Macromol. Biosci. 5, 373–378.

    Article  CAS  PubMed  Google Scholar 

  35. Carter, S., Hunt, B., and Rimmer, S. (2005) Highly branched poly(N-isopropyl-acrylamide)s with imidazole end groups prepared by radical polymerization in the presence of a styryl monomer containing a dithioester group. Macromolecules 38 , 4595–4603.

    Article  CAS  Google Scholar 

  36. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  CAS  PubMed  Google Scholar 

  37. Galaev, I. Yu., Kumar, A., and Mattiasson, B. (1999) Metal-copolymer complexes of N-isopropylacrylamide for affinity precipitation of proteins. J. Mol. Sci-Pure Appl. Chem. A36, 1093–1105.

    CAS  Google Scholar 

  38. Wuenschell, G. E., Naranjo, E., and Arnold, F. H. (1990) Aqueous two-phase metal affinity extraction of heme proteins. Bioprocess Eng. 5, 199–202.

    Article  CAS  Google Scholar 

  39. Kumar, A., Galaev, I. Yu., and Mattiasson, B. (1998) Isolation and separation of α–amylase inhibitors I-1 and I-2 from seeds of ragi (Indian finger millet, Eleusine coracana) by metal chelate affinity precipitation. Bioseparation 7, 129–136.

    Article  CAS  Google Scholar 

  40. Mattiasson, B., Kumar, A., and Galaev, I. Yu. (1998) Affinity precipitation of proteins: design criteria for an efficient polymer. J. Mol. Recognit. 11, 211–216.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kumar, A., Galaev, I.Y., Mattiasson, B. (2008). Affinity Precipitation of Proteins Using Metal Chelates. In: Zachariou, M. (eds) Affinity Chromatography. Methods in Molecular Biology™, vol 421. Humana Press. https://doi.org/10.1007/978-1-59745-582-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-582-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-659-7

  • Online ISBN: 978-1-59745-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics