Skip to main content

Reduction and Possible Mechanisms of Evolution of the Bacterial Genomes

  • Conference paper
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 871 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arber W (1999) Involvement of gene products in bacterial evolution. Ann NY Acad Sci 18:36–44.

    Article  Google Scholar 

  2. Berg OG, Kurland CG (2002) Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol 19:2265–2276.

    PubMed  CAS  Google Scholar 

  3. Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586.

    Article  PubMed  CAS  Google Scholar 

  4. Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407.

    Article  PubMed  CAS  Google Scholar 

  5. Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116.

    Article  PubMed  CAS  Google Scholar 

  6. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin XY, Mathur E Ni JW, Podar M, Richardson T, Sutton GG, Simon M, Soll D, Stetter KO, Short JM, Noordewier M. (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12,984–12,988.

    Article  CAS  Google Scholar 

  7. Chain PSG, Carniel E, Larimer FW, Lamerdin JP, Stoutland WM, Regala AM, Georgescu LM, Vergez ML, Land O, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux DJ, Elliott M, Derbise AL, Hauser J, Garcia E (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis Proc Natl Acad Sci USA 101:13,826–13,831.

    Article  CAS  Google Scholar 

  8. Wren BW (2002) Deciphering tsetse's secret partner. Nat Genet 32:335–336.

    Article  PubMed  CAS  Google Scholar 

  9. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, & Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  10. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MT, Churcher CM, Bentley SD, Mungall KL, Cerdeno-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O'Neil S, Ormond D, Price C, Rabbinowitsch E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Unwin L, Whitehead S, Barrell BG, Maskell DJ (2003) Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35:32–40.

    Article  PubMed  Google Scholar 

  11. Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA, Mooi FR (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica PLoS Pathogens 1:e45.

    Article  PubMed  Google Scholar 

  12. Alsmark CM, Frank AC, Karlberg EO, Legault BA, Ardell DH, Canback B, Eriksson AS, Naslund AK, Handley SA, Huvet M, La Scola B, Holmberg M, Andersson SG (2004) The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc Natl Acad Sci USA 101:9716–9721.

    Article  PubMed  CAS  Google Scholar 

  13. Nierman WC, DeShazer D, Kim HS, Tettelin H, Nelson KE, Feldblyum T, Ulrich RL, Ronning CM, Brinkac LM, Daugherty SC (2004) Structural flexibility in the Burkholderia genome. Proc Natl Acad Sci USA 101:14,246–14,251.

    Article  CAS  Google Scholar 

  14. Kim HS, Schell MA, Yu Y, Ulrich RL, Sarria SH, Nierman WC, DeShazer D (2005) Bacterial genome adaptation to niches: Divergence of the potential virulence genes in three Burkholderia species of different survival strategies. BMC Genomics 6:174.

    Article  PubMed  Google Scholar 

  15. Rio RVM, Lefevre C, Heddi A, Aksoy S (2003) Comparative genomics of insect-symbiotic bacteria: influence of host environment on microbial genome composition. Appl Envir Microbiol 69:6825–6832.

    Article  CAS  Google Scholar 

  16. Wernegreen JJ, Degnan PH, Lazarus AB, Palacios C, Bordenstein SR (2003) Genome evolution in an insect cell: distinct features of an ant-bacterial partnership. Biol Bull 204:221–231.

    Article  PubMed  CAS  Google Scholar 

  17. Andersson SGE, Kurland CG (1998) Reductive evolution of resident genomes. Trends Microbiol 6:263–268.

    Article  PubMed  CAS  Google Scholar 

  18. Andersson JO, Andersson SGE (1999) Insights into the evolutionary process of genome degradation. Curr Op Gen Dev 9:664–671.

    Article  CAS  Google Scholar 

  19. Andersson JO, Andersson SGE (2001) Pseudogenes, junk DNA and the dynamics of Rickettsia genomes. Mol Biol Evol 16:1178–1191.

    Google Scholar 

  20. Moran NA, Wernegreen JJ (2000) Are mutualism and parasitism irreversible evolutionary alternatives for endosymbiotic bacteria? Insights from molecular phylogenetics and genomics. Trends Ecol Evol 15:321–326.

    Article  PubMed  Google Scholar 

  21. Clark MA, Baumann L, Thao ML, Moran NA, Baumann P (2001) Degenerative minimalism in the genome of a psyllid endosymbiont. J Bacteriol 183:1853–1861.

    Article  PubMed  CAS  Google Scholar 

  22. Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596.

    Article  PubMed  CAS  Google Scholar 

  23. Moran NA, Mira A (2001) Genome Biol 2:12.

    Article  Google Scholar 

  24. Silva F, Latorre A, Moya A (2001) Genome size reduction through multiple events of gene disintegration in Buchnera APS. Trends Genet 17:615–618.

    Article  PubMed  CAS  Google Scholar 

  25. Moran NA (2002) Genome evolution in endosymbiotic bacteria. Am Soc Microbiol News 68:499–505.

    Google Scholar 

  26. Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Ann Rev Microbiol 56:93–116.

    Article  CAS  Google Scholar 

  27. Rosas-Magallanes V, Deschavanne P, Quintana-Murci L, Brosch R, Gicquel B, Neyrolles O (2006) Horizontal transfer of a virulence operon to the ancestor of Mycobacterium tuberculosis. Mol Biol Evol 23:1129–1135.

    Article  PubMed  CAS  Google Scholar 

  28. Lesic B, Carniel E (2005) Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis. J Bacteriol 187:3352–3358.

    Article  PubMed  CAS  Google Scholar 

  29. Fuchslocher B, Millar LL, Cotter PA (2003) Comparison of bipA alleles within and across Bordetella species. Infect Immun 71:3043–3052.

    Article  PubMed  CAS  Google Scholar 

  30. DeShazer D (2004) Genomic diversity of Burkholderia pseudomallei clinical isolates: subtractive hybridization reveals a Burkholderia mallei -specific prophage in B. pseudomallei 1026b. J Bacteriol 186:3938–3950.

    Article  PubMed  CAS  Google Scholar 

  31. Bozeman MF, Masiello SA, Williams MS, Elisberg BL (1975) Epidemic typhus rickettsiae isolated from flying squirrels. Nature 255:545–547.

    Article  PubMed  CAS  Google Scholar 

  32. Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:1186.

    Article  Google Scholar 

  33. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047.

    Article  PubMed  CAS  Google Scholar 

  34. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10,020–10,025.

    Article  CAS  Google Scholar 

  35. Hess WR (2004) Genome analysis of marine photosynthetic microbes and their global role. Curr Opin Biotechnol 15: 191–198.

    Article  PubMed  CAS  Google Scholar 

  36. Sliwa P, Korona R (2005) Loss of dispensable genes is not adaptive in yeast. Proc Natl Acad Sci USA 102:17,670–17,674.

    Article  CAS  Google Scholar 

  37. Belkum A, van Scherer S, Alphen L, van Verbrugh H (1998) Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62:275–293.

    PubMed  Google Scholar 

  38. McGrath CL, Katz LA (2004) Genome diversity in microbial eukaryotes. Trends Ecol Evol 19:32–38.

    Article  PubMed  Google Scholar 

  39. Gregory TR (2004) Insertion—deletion biases and the evolution of genome size. Gene 324:15–34.

    Article  PubMed  CAS  Google Scholar 

  40. Bennetzen J, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132.

    Article  PubMed  CAS  Google Scholar 

  41. Petrov DA (2002) Mutational equilibrium model of genome size evolution. Theor Popul Biol 61:531–543.

    Article  PubMed  Google Scholar 

  42. Petrov DA, Lozovskaya ER, Hartl DL (1996) High Intrinsic rate of DNA loss in Drosophila. Nature 384:346–349.

    Article  PubMed  CAS  Google Scholar 

  43. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190.

    Article  PubMed  CAS  Google Scholar 

  44. Brinig MM, Cummings CA, Sanden GN, Stefanelli P, Lawrence A, Relman DA (2006) Significant gene order and expression differences in Bordetella pertussis despite limited gene content variation. J Bacteriol 188:2375–2382.

    Article  PubMed  CAS  Google Scholar 

  45. Faure D, Frederick R, Woch D, Portier P, Blot M, Adams J (2004) Genomic changes arising in long-term stab cultures of Escherichia coli. J Bacteriol 186:6437–6442.

    Article  PubMed  CAS  Google Scholar 

  46. Reiter WD, Palm P, Yeats S (1989) Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907–1914.

    Article  PubMed  CAS  Google Scholar 

  47. Williams KP (2002) Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 15:866–875.

    Article  Google Scholar 

  48. Rowe-Magnus DA, Guerout A-M, Ploncard P, Dychinco B, Davies J, Mazel D (2001) The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc Natl Acad Sci USA 98:652–657.

    Article  PubMed  CAS  Google Scholar 

  49. Rowe-Magnus DA, Davies J, Mazel D (2002) Impact of integrons and transposons on the evolution of resistance and virulence. Curr Top Microbiol Immunol 264:167–188.

    PubMed  CAS  Google Scholar 

  50. Rowe-Magnus DA, Guerout A-M, Biskri L, Bouige P, Mazel D (2003) Comparative analysis of superintegrons: engineering extensive genetic diversity in the vibrionaceae. Genome Res 13:428–442.

    Article  PubMed  CAS  Google Scholar 

  51. Dongen WMAM, van Vlerken MMA, van De Graaf FK (1987) Nucleotide sequence of a DNA fragment encoding a Vibrio cholerae haemagglutinin. Mol Gen 6:85–91.

    Google Scholar 

  52. Ogawa A, Takeda T (1993) The gene encoding the heat-stable enterotoxin of Vibrio cholerae is flanked by 123-base pair direct repeats. Microbiol Immunol 37:607–616.

    PubMed  CAS  Google Scholar 

  53. Barker A, Manning PA (1997) VlpA of Vibrio cholerae O1: The first bacterial member of the 2-microglobulin lipocalin super-family. Microbiology 143:1805–1813.

    Article  PubMed  CAS  Google Scholar 

  54. Vaisvila R, Morgan RD, osfai J, Raleigh EA (2001) Discovery and distribution of super-integrons among Pseudomonads. Mol Microbiol 42:587–601.

    Article  PubMed  CAS  Google Scholar 

  55. obes R, Pareja E (2006) Bacterial repetitive extragenic palindromic sequences are DNA targets for insertion sequence elements. BMC Genomics 7:62.

    Article  Google Scholar 

  56. Mahillon J, Chandler M (1998) Insertion sequences. Microbiol Mol Biol Rev 62:725–774.

    PubMed  CAS  Google Scholar 

  57. Aras RA, Kang J, Tschumi AI, Harasaki Y, Blaser MJ (2003) Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc Natl Acad Sci USA 100:13,579–13,584.

    Article  CAS  Google Scholar 

  58. Rocha EPC, Blanchard A (2002) Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res 30:2031–2042.

    Article  PubMed  CAS  Google Scholar 

  59. Achaz G, Rocha EPC, Netter P, Coissac E. (2002) Origin and fate of repeats in bacteria. Nucleic Acids Res 30: 2987–2994.

    Article  PubMed  CAS  Google Scholar 

  60. Andersson JO, Sarchfield SW, Roger AJ (2005) Gene transfers from nanoarchaeota to an ancestor of diplomonads and parabasalids. Mol Biol Evol 22:85–90.

    Article  PubMed  CAS  Google Scholar 

  61. Natsuko K, Nikoh N, Ijichi N, Shimada M, Fukatsu T (2002) Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA 99:14,280–14,285.

    Google Scholar 

  62. Dawkins R (1976) The Selfish Gene. Oxford University Press, New York and Oxford, p. 47.

    Google Scholar 

  63. Orgel LE, Crick FHC (1980) Selfish DNA: The ultimate parasite. Nature 284:604–607.

    Article  PubMed  CAS  Google Scholar 

  64. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603.

    Article  PubMed  CAS  Google Scholar 

  65. Berg LS (1922) Nomogenesis, or the evolution based on the regularity. Proceedings of the Institute of Geography, State Press, Petrograd (Russ.).

    Google Scholar 

  66. Goldshmidt R (1982) The Material Basis of Evolution Yale University Press, New Haven, CT.

    Google Scholar 

  67. Sobolev, DN. (1924) The bases of historical biogenetics. Kiev (Russ.).

    Google Scholar 

  68. Filipchenko, Yu. A (1977) An idea of evolution in biology. Moscow, Nauka (Russ.)

    Google Scholar 

  69. Lubischev, A. A (1982) The problems of form, taxonomy, and evolution of the organisms. Moscow, Nauka (Russ.)

    Google Scholar 

  70. Moran NA (1996) Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878.

    Article  PubMed  CAS  Google Scholar 

  71. Woolfit M, Bromham L (2003) Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20:1545–1555.

    Article  PubMed  CAS  Google Scholar 

  72. Itoh T, Martin W, Nei M (2002) Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proc Natl Acad Sci USA 99:12,944–12,948.

    Article  CAS  Google Scholar 

  73. Dale C, Wang B, Moran N, Ochman H (2003) Loss of DNA recombinational repair enzymes in the initial stages of genome degeneration. Mol Biol Evol 20:1188–1194.

    Article  PubMed  CAS  Google Scholar 

  74. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science. 296:2376–2379.

    Article  PubMed  CAS  Google Scholar 

  75. Ham RCHJ, van González-Candelas F, Silva FJ, Sabater B, Moya A, Latorre A (2000) Postsymbiotic plasmid acquisition and evolution of the repA1 -replicon in Buchnera aphidicola. Proc Natl Acad Sci USA 97:10,855–10,860.

    Google Scholar 

  76. Baldo L, Bordenstein S, Wernegreen JJ, Werren JH (2006) Widespread recombination throughout Wolbachia genomes. Mol Biol Evol 23:437–449.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Yu V, Litvin EI, Korenberg VA, Lanzov AA, Prozorov ED, Sverdlov, Saenko AS for their thoughtful reading of the manuscript and criticism. This work was supported in part by the BTEP/ISTC Grant No. 53/2223.

Author information

Authors and Affiliations

Authors

Editor information

Vassil St. Georgiev PhD Karl A. Western MD John J. McGowan PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this paper

Cite this paper

Smirnov, G.B. (2008). Reduction and Possible Mechanisms of Evolution of the Bacterial Genomes. In: Georgiev, V.S., Western, K.A., McGowan, J.J. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59745-569-5_22

Download citation

Publish with us

Policies and ethics